Skip to main content

Advertisement

Log in

Sources of skill in near-term climate prediction: generating initial conditions

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This study investigates the role of different areas of the ocean in driving the climate variability. The impact of both global and regional ocean nudging on the climate reconstruction obtained with the climate model EC-Earth v2.3 is studied over the period 1960–2012. Ocean temperature and salinity below the mixed layer are relaxed toward the monthly averages from the ORAS4 ocean reanalysis. Three coupled ocean–atmosphere simulations are considered: (1) global ocean nudging, (2) nudging in the global upper ocean (above 2000 m) and (3) nudging in the mid-latitude ocean and at full ocean depth. The experimental setup allows for identifying local and remote effects of nudging on different geographical areas. The validation is based on the correlation coefficients and the root mean square error skill score and concerns the following variables: ocean heat content, ocean barotropic streamfunction, intensity of the ocean gyres and indexes of convection, sea ice extension, near-surface air and sea surface temperature, and El Niño–Southern Oscillation 3.4 index. The results can be summarized as follows: (1) the positive impact on the reconstruction of the ocean state is found almost everywhere and for most of the analyzed variables, including unconstrained variables and/or regions, (2) deep-ocean nudging shows low impact on sea-surface temperature but a significant impact on the ocean circulation, (3) mid-latitude ocean nudging shows systematically the worst performance pointing at the importance of the poles and tropics in reconstructing the global ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Auroux D, Blum J (2008) A nudging-based data assimilation method: the back and forth nudging (BFN) algorithm. Nonlinear Process Geophys 15:305–319

    Article  Google Scholar 

  • Balmaseda M, Mogensen K, Weaver A (2013) Evaluation of the ECMWF ocean reanalysis system ORAS4. Q J R Meteorol Soc 139:1132–1161. doi:10.1002/qj.2063

    Article  Google Scholar 

  • Booth B, Dunstone N, Halloran P, Andrews T, Bellouin N (2012) Aerosols implicated as a prime driver of twentieth-century north atlantic climate variability. Nature 484:228–232

    Article  Google Scholar 

  • Brodeau L, Barnier B, Treguier AM, Penduff T, Gulev S (2010) An ERA40-based atmospheric forcing for global ocean circulation models. Ocean Model 31:88–104

    Article  Google Scholar 

  • Carrassi A, Weber R, Guemas V, Doblas-Reyes F, Asif M, Volpi D (2014) Full-field and anomaly initialization using a low-order climate model: a comparison and proposals for advanced formulations. Nonlinear Process Geophys 21:521–537

    Article  Google Scholar 

  • Challinor A, Slingo J, Wheeler T, DoblasReyes F (2005) Probabilistic simulations of crop yield over western india using the demeter seasonal hindcast ensembles. Tellus A 57(3):498–512. doi:10.1111/j.1600-0870.2005.00126.x

    Article  Google Scholar 

  • Daron JD (2012) Examining the decision-relevance of climate model information for the insurance industry. Ph.D. thesis, The London School of Economics and Political Science

  • Doblas-Reyes F, Andreu-Burillo I, Chikamoto Y, Garca-Serrano J, Guemas V, Kimoto M, Mochizuki T, Rodrigues L, van Oldenborgh G (2013a) Initialized near-term regional climate change prediction. Nat Commun 4:1715

    Article  Google Scholar 

  • Doblas-Reyes F, García-Serrano J, Lienert F, Biescas AP, Rodrigues L (2013b) Seasonal climate predictability and forecasting: status and prospects. WIREs Clim Change 4:245–268

    Article  Google Scholar 

  • Doblas-Reyes FJ, Balmaseda MA, Weisheimer A, Palmer TN (2011) Decadal climate prediction with the European Centre for Medium Range Weather Forecasts coupled forecast system: impact of ocean observations. J Geophys Res. doi:10.1029/2010JD015394

    Google Scholar 

  • Dunstone N, Smith D (2010) Impact of atmosphere and subsurface ocean data on decadal climate prediction. Geophys Res Lett 37(L02):709

    Google Scholar 

  • Ethe C, Aumont O, Foujols MA, Levy M (2006) NEMO reference manual, tracer component: NEMO-TOP. Preliminary version. Note du Pole de modélisation, Institut Pierre-Simon Laplace (IPSL). France 28:1288–1619

    Google Scholar 

  • Fan Y, van den Dool H (2008) A global monthly land surface air temperature analysis for 1948-present. J Geophys Res. doi:10.1029/2007JD008470

    Google Scholar 

  • Fichefet T, Maqueda MAM (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102:12,609–12,646

    Article  Google Scholar 

  • García-Morales M, Dubus L (2007) Forecasting precipitation for hydroelectric power management: how to exploit GCM’s seasonal ensemble forecasts. Int J Climatol 12(27):1691–1705. doi:10.1002/joc.1608

    Article  Google Scholar 

  • Germe A, Chevallier M, y Mélia DS, Sanchez-Gomez E (2014) Interannual predictability of arctic sea ice in a global climate model: regional contrasts and temporal evolution. Clim Dyn. doi:10.1007/s00382-014-2071-2

    Google Scholar 

  • Goosse H, Fichefet T (1999) Importance of ice-ocean interactions for the global ocean circulation: a model study. J Geophys Res 104:23,337–23,355

    Article  Google Scholar 

  • Guemas V, Doblas-Reyes F, Mogensen K, Tang Y, Keeley S (2014) Ensemble of sea ice initial conditions for interannual climate predictions. Clim Dyn 43:2813–2829. doi:10.1007/s00382-014-2095-7

    Article  Google Scholar 

  • Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys. doi:10.1029/2010RG000345

    Google Scholar 

  • Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90:1095–1107

    Article  Google Scholar 

  • Hazeleger W, Wang X, Severijns C, Stefanescu S, Bintanja R, Sterl A, Wyser K, Semmler T, Yang S, van den Hurk B (2012) EC-Earth V2.2: description and validation of a new seamless Earth system prediction model. Clim Dyn. doi:10.1007/s00382-011-1228-5

    Google Scholar 

  • Hazeleger W, Guemas V, Wouters B, Corti S, Andreu-Burillo I, Doblas-Reyes F, Wyser K, Caian M (2013) Multiyear climate predictions using two initialization strategies. Geophys Res Lett. doi:10.1002/grl.50355

    Google Scholar 

  • Hoke J, Anthes R (1976) The initialization of numerical models by a dynamic-initialization technique. Mon Weather Rev 104:1551–1556

    Article  Google Scholar 

  • Ide K, Courtier P, Ghil M, Lorenc AC (1997) Unified notation for data assimilation: operational, sequential and variational. J Meteorol Soc Jpn 75(1B):181–189

    Google Scholar 

  • Kalnay E (2002) Atmospheric modeling, data assimilation, and predictability. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Keenlyside NS, Latif M, Jungclaus J, Kornblueth L, Roeckner E (2008) Advancing decadal-scale climate prediction in the North Atlantic sector. Nature 453:84–88. doi:10.1038/nature06921

    Article  Google Scholar 

  • Kröger J, von Storch WMJS (2012) Impact of different ocean reanalyses on decadal climate prediction. Clim Dyn 39:795–810. doi:10.1007/s00382-012-1310-7

    Article  Google Scholar 

  • Lakshmivarahan S, Lewis J (2012) Data assimilation for atmospheric, oceanic and hydrological applications, vol 2. Springer, Berlin. doi:10.1007/978-3-642-35088-7_2

    Google Scholar 

  • Latif M, Collins M, Pohlmann H, Keenlyside N (2006) A review of predictability studies of atlantic sector climate on decadal time scales. J Clim 19:5971–5987

    Article  Google Scholar 

  • Lei L, Stauffer D, Haupt S, Young G (2012) A hybrid nudging-ensemble kalman filter approach to data assimilation. part II: application in a shallow-water model. Tellus A 64:18485

    Google Scholar 

  • Madec G (2008) NEMO ocean engine. Note du Pole de modélisation, Institut Pierre-Simon Laplace (IPSL), France 27:1288–1619

    Google Scholar 

  • Magnusson L, Alonso-Balmaseda M, Corti S, Molteni F, Stockdale T (2013) Evaluation of forecast strategies for seasonal and decadal forecasts in presence of systematic model errors. Clim Dyn 41:2393–2409. doi:10.1007/s00382-012-1599-2

    Article  Google Scholar 

  • Meehl G et al (2013) Decadal climate prediction: an update from the trenches. Bull Am Meteorol Soc 95(95):243–267. doi:10.1175/BAMS-D-12-00241.1

    Google Scholar 

  • Meehl GA, Goddard L, Murphy J, Stouffer RJ, Boer G, Danabasoglu G, Dixon K, Giorgetta MA, Greene AM, Hawkins E, Hegerl G, Karoly D, Keenlyside N, Kimoto M, Navarra BKA, Pulwarty R, Smith D, Stammer D, Stockdale T (2009) Decadal prediction. Bull Am Meteorol Soc 90(10):1467–1485

    Article  Google Scholar 

  • Mochizuki T, Ishii M, Kimoto M, Chikamoto Y, Watanabe M, Nozawa T, Sakamoto TT, Shiogama H, Awaji T, Sugiura N, Toyoda T, Yasunaka S, Tatebe H, Mori M (2010) Pacific decadal oscillation hindcasts relevant to near-term climate prediction. PNAS 107:1833–1837. doi:10.1073/pnas.0906531107

    Article  Google Scholar 

  • Mogensen K, Balmaseda M, Weaver A (2012) The NEMOVAR ocean data assimilation system as implemented in the ECMWF ocean analysis for system 4. Tech Mem ECMWF 668

  • Murphy J, Kattsov V, Keenlyside N, Kimoto M, Meehl G, Mehtaf V, Pohlmann H, Scaife A, Smith D (2010) Towards prediction of decadal climate variability and change. Proc Environ Sci 1:287–304

    Article  Google Scholar 

  • van Oldenborgh G, Doblas-Reyes F, Wouters B, Hazeleger W (2012) Skill in the trend and internal variability in a multi-model decadal prediction ensemble. Clim Dyn 38:1263–1280

    Article  Google Scholar 

  • Pohlmann H, Jungclaus JH, Kohl A, Stammer D, Marotzke J (2009) Initializing decadal climate predictions with the GECCO oceanic synthesis: effects on the North Atlantic. J Clim 22:3926–3938

    Article  Google Scholar 

  • Polkova I, Köhl A, Stammer D (2014) Impact of initialization procedures on the predictive skill of a coupled ocean atmosphere model. Clim Dyn 42:3151–3169. doi:10.1007/s00382-013-1969-4

    Article  Google Scholar 

  • Rayner N, Brohan P, Parker D, Folland C, Kennedy J, Vanicek M, Ansell T, Tett S (2006) Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: the HADSST2 data set. J Clim 19(13):446–469

    Article  Google Scholar 

  • Sanchez-Gomez E, Cassou C, Ruprich-Robert Y, Fernandez E, Terray L (2015) Drift dynamics in a coupled model initialized for decadal forecasts. Clim Dyn. doi:10.1007/s00382-015-2678-y

    Google Scholar 

  • Smith D, Murphy J (2007) An objective ocean temperature and salinity analysis using covariances from a global model. J Geophys Res 112(C02):022. doi:10.1029/2005JC003172

    Google Scholar 

  • Smith D, Cusack A, Colman A, Folland C, Harris G, Murphy J (2007) Improved surface temperature prediction for the coming decade from a global climate model. Science 317:796–799. doi:10.1126/science.1139540

    Article  Google Scholar 

  • Smith D, Eade R, Pohlmann H (2013) A comparison of full-field and anomaly initialization for seasonal to decadal climate prediction. Clim Dyn 41:3325–3338. doi:10.1007/s00382-0131683-2

    Article  Google Scholar 

  • Smith TM, Reynolds RW, Lawrimore TCPH (2008) Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2011) An overview of CMIP5 and the experimental design. Bull Am Meteorol Soc. doi:10.1175/BAMS-D-11-00094.1

    Google Scholar 

  • Thompson M, Doblas-Reyes F, Mason S, Hagedorn R, Connor S, Phindela T, Morse A, Palmer T (2006) Malaria early warnings based on seasonal climate forecasts from multi-model ensembles. Nature 439:576–579. doi:10.1038/nature04503

    Article  Google Scholar 

  • Uppala S, Kallberg P, Simmons A, Andrae U, Bechtold V, Fiorino M, Gibson J, Haseler J, Hernandez A, Kelly G, Li X, Onogi K, Saarinen S, Allan NSR, Andersson E, Arpe K, Balmaseda M, Beljaars A, Berg L, Bormann JBN, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hoskins EHB, Isaksen L, Janssen P, Jenne R, Mcnally A, Mahfouf JF, Morcrette JJ, Rayner N, Saunders R, Simon P, Sterl A, Trenberth K, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 reanalysis. Q J R Meteorol Soc 131:2961–3012

    Article  Google Scholar 

  • Valcke S (2013) The OASIS3 coupler: a European climate modelling community software. Geosci Model Dev 6:373–388. doi:10.5194/gmd-6-373-2013

    Article  Google Scholar 

  • Weber R, Carrassi A, Doblas-Reyes F (2015) Linking the anomaly initialization approach to the mapping paradigm: a proof-of-concept study. Mon Weather Rev 143:4695–4713

    Article  Google Scholar 

Download references

Acknowledgments

A. Carrassi was financed through the IEF Marie Curie Project INCLIDA of the FP7. This work was supported by the EU-funded SPECS (FP7-ENV-2012- 308378), the MINECO-funded PICA-ICE (CGL2012-31987) Projects, and EU-FP7 Project SANGOMA under Grant Agreement No. 283580.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Carrassi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrassi, A., Guemas, V., Doblas-Reyes, F.J. et al. Sources of skill in near-term climate prediction: generating initial conditions. Clim Dyn 47, 3693–3712 (2016). https://doi.org/10.1007/s00382-016-3036-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3036-4

Keywords

Navigation