Skip to main content

Advertisement

Log in

ENSO and non-ENSO induced charging and discharging of the equatorial Pacific

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

It is well established that variations in extratropical North Pacific wind stress fields can influence the state of the tropical Pacific 12–15 months prior to the maturation of boreal winter El Niño/Southern Oscillation (ENSO) events. While most research has focused on accompanying variations in the North Pacific trade winds and underlying sea surface temperatures that subsequently shift equatorward via anomalous air–sea interactions—e.g. meridional mode dynamics—observational and numerical model analyses indicate empirical and dynamical links exist between these same trade-wind variations and concurrent changes in subsurface temperatures across the equatorial Pacific, which can also serve as a key initiator of ENSO events. This paper shows that within an observationally-constrained ocean reanalysis dataset this initiation mechanism—termed the trade-wind charging (TWC) mechanism—is induced by the second leading mode of boreal winter zonal wind stress variability over the tropical Pacific and operates separately from ENSO-induced recharge/discharge of the equatorial Pacific heat content. The paper then examines the characteristics and evolution of the ENSO and TWC modes. Results indicate that the oceanic evolution for both modes is consistent with wind stress induced vertically-integrated, meridional mass transport into and out of the equatorial Pacific—i.e. a charging and discharging of the equatorial Pacific—despite having distinctly different wind stress anomaly patterns. The process-based similarity between these two modes of tropical Pacific wind stress variability suggests that both can produce a charging/discharging of the equatorial Pacific, however one (the ENSO mode) represents part of the ENSO cycle itself and the other (the TWC mode) represents a separate forcing mechanism of that cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Alexander MA et al (2002) The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global ocean. J Clim 15:2205–2231

    Article  Google Scholar 

  • Alexander MA, Vimont DJ, Chang P, Scott JD (2010) The impact of extratropical atmospheric variability on ENSO: testing the seasonal footprinting mechanism using coupled model experiments. J Clim 23:2885–2901

    Article  Google Scholar 

  • Anderson BT (2003) Tropical Pacific sea-surface temperatures and preceding sea-level pressure anomalies in the subtropical North Pacific. J Geophys Res 108: Art No 4732

  • Anderson BT (2004) Investigation of a large-scale mode of ocean-atmosphere variability and its relation to tropical Pacific sea surface temperature anomalies. J Clim 17:1089–4098

    Article  Google Scholar 

  • Anderson BT, Maloney E (2006) Interannual tropical pacific sea-surface temperatures and preceding sub-tropical North Pacific sea level pressure anomalies in the NCAR CCSM2.0. J Clim 19:998–1012

    Article  Google Scholar 

  • Anderson BT, Perez R, Karspeck A (2013a) Triggering of El Niño onset through the trade-wind induced charging of the equatorial Pacific. Geophys Res Lett. doi:10.1002/grl.50200

    Google Scholar 

  • Anderson BT, Furtado JC, Di Lorenzo E, Cobb K (2013b) Extratropical forcing of El Niño/Southern Oscillation asymmetry. Geophys Res Lett. doi:10.1002/grl.50951

    Google Scholar 

  • Balmaseda MA, Vidard A, Anderson DLT (2008) The ECMWF ocean analysis system: ORA-S3. Mon Weather Rev 136:3018–3034

    Article  Google Scholar 

  • Balmaseda MA, Mogensen K, Weaver AT (2013) Evaluation of the ECMW ocean reanalysis system ORAS4. Q J R Meteorol Soc 139:1132–1161

    Article  Google Scholar 

  • Barnett TP (1985) Variations in near-global sea level pressure. J Atmos Sci 42:478–501

    Article  Google Scholar 

  • Barnett TP et al (1988) On the prediction of the El Niño of 1986–1987. Science 241:92–196

    Article  Google Scholar 

  • Barnett TP et al (1999) Interdecadal interactions between the tropics and midlatitudes in the Pacific basin. Geophys Res Lett 26:615–618

    Article  Google Scholar 

  • Capotondi A, Alexander MA, Deser C (2003) Why are there Rossby wave maxima in the Pacific at 10°S and 13°N? J Phys Ocean 33:1549–1563

    Article  Google Scholar 

  • Chan JCL, Xu JJ (2000) Physical mechanisms responsible for the transition from a warm to a cold state of the El Niño-Southern Oscillation. J Clim 13:2056–2071

    Article  Google Scholar 

  • Chang P et al (2007) Pacific meridional mode and El Niño—Southern Oscillation. Geophys Res Lett. doi:10.1029/2007GL030302

    Google Scholar 

  • Chiang JCH, Vimont DJ (2004) Analogous Pacific and Atlantic meridonal modes of tropical atmosphere–ocean variability. J Clim 17:4143–4158

    Article  Google Scholar 

  • Clarke AJ, Van Gorder S, Colantuono G (2007) Wind stress curl and ENSO discharge/recharge in the equatorial Pacific. J Phys Ocean 37:1077–1091

    Article  Google Scholar 

  • Deser C, Capotondi A, Saravanan R, Phillips AS (2006) Tropical Pacific and Atlantic climate variability in CCSM3. J Clim 19:2451–2481

    Article  Google Scholar 

  • Deser C et al (2012) ENSO and Pacific decadal variability in the Community Climate System Model Version 4. J Clim 25:2622–2651

    Article  Google Scholar 

  • Ely LL et al (1993) A 5000-year record of extreme floods and climate-change in the Southwestern United States. Science 262:410–412

    Article  Google Scholar 

  • Gershunov A, Barnett TP (1998) ENSO influence on intraseasonal extreme rainfall and temperature frequencies in the contiguous United States: observations and model results. J Clim 11:1575–1586

    Article  Google Scholar 

  • Gu D, Philander SGH (1997) Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science 275:805–807

    Article  Google Scholar 

  • Ishida A, Kashido Y, Hosoda S, Ando K (2008) North-south asymmetry of warm water volume transport related with El Niño variability. Geophy Res Lett. doi:10.1029/2008GL034858

    Google Scholar 

  • Jin F-F (1997) An equatorial ocean recharge paradigm for ENSO 1 Conceptual model. J Atmos Sci 54:811–829

    Article  Google Scholar 

  • Jin F-F, Neelin JD, Ghil M (1994) El Niño on the Devil’s staircase—annual subharmonic steps to chaos. Science 164:70–72

    Article  Google Scholar 

  • Kao H-Y, Yu J-Y (2009) Contrasting eastern-Pacific and central-Pacific types of ENSO. J Clim 22:615–632

    Article  Google Scholar 

  • Kidson JE (1975) Tropical eigenvector analysis and the southern oscillation. Mon Weather Rev 103:187–196

    Article  Google Scholar 

  • Kiladis GN, Diaz HF (1989) Global climatic anomalies associated with extremes in the Southern Oscillation. J Clim 2:1069–1090

    Article  Google Scholar 

  • Kug J-S, Kang I-S, An S-I (2003) Symmetric and antisymmetric mass exchanges between the equatorial and off-equatorial Pacific associated with ENSO. J Geophys Res. doi:10.1029/2002JC001671

    Google Scholar 

  • Kumar A, Hoerling MP (1998) Annual cycle of Pacific-North American seasonal predictability associated with different phases of ENSO. J Clim 11:3295–3308

    Article  Google Scholar 

  • Kumar A, Hu Z-Z (2014) Interannual and interdecadal variability of ocean temperature along the equatorial Pacific in conjunction with ENSO. DOI, Clim Dyn. doi:10.1007/s00382-013-1721-0

    Google Scholar 

  • Larson S, Kirtman B (2013) The Pacific meridional mode as a trigger for ENSO in a high-resolution coupled model. Geophys Res Lett. doi:10.1002/grl50571

    Google Scholar 

  • Larson S, Kirtman B (2014) Assessing Pacific meridional mode forecasts and its role as an ENSO precursor and predictor in the North American multi-model ensemble. J Clim. doi:10.1175/JCLI-D-14-00055.1

    Google Scholar 

  • Li T (1997) Phase transition of the El Niño-Southern Oscillation: a stationary SST mode. J Atmos Sci 54:2872–2887

    Article  Google Scholar 

  • Linkin ME, Nigam S (2008) The North Pacific Oscillation-West Pacific teleconnection pattern: mature-phase structure and winter impacts. J Clim 21:1979–1997

    Article  Google Scholar 

  • Lynse J, Chang P, Giese B (1997) Impact of the extratropical Pacific on equatorial variability. Geophys Res Lett 24:2589–2592

    Article  Google Scholar 

  • McCreary J (1976) Eastern tropical ocean response to changing wind systems—with application to El Niño. J Phys Oceanogr 6:632–645

    Article  Google Scholar 

  • McPhaden MJ (2003) Tropical Pacific Ocean heat content variations and ENSO persistence barriers. Geophys Res Lett. doi:10.1029/2003GL016872

    Google Scholar 

  • McPhaden MJ (2012) A 21st century shift in the relationship between ENSO SST and warm water volume anomalies. Geophys Res Lett. doi:10.1029/2012GL051826

    Google Scholar 

  • Meinen CS, McPhaden MJ (2000) Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J Clim 13:3551–3559

    Article  Google Scholar 

  • Neelin JD et al (1998) ENSO theory. J Geophys Res 103:14261–14290

    Article  Google Scholar 

  • Newman M, Alexander MA, Scott JD (2011) An empirical model of tropical ocean dynamics. Clim Dyn 37:1823–1841

    Article  Google Scholar 

  • Penland C (1996) A stochastic model of IndoPacific sea surface temperature anomalies. Phys D 98:534–558

    Article  Google Scholar 

  • Penland C, Sardeshmukh PD (1995) The optimal growth of tropical sea surface temperature anomalies. J Clim 8:1999–2024

    Article  Google Scholar 

  • Perez RC, Kessler WS (2009) Three-dimensional structure of tropical cells in the central equatorial Pacific Ocean. J Phys Oceanogr 39:27–49

    Article  Google Scholar 

  • Philander SGH (1985) El Niño and La Niña. J Atmos Sci 42:2652–2662

    Article  Google Scholar 

  • Pierce DW, Barnett TP, Latif M (2000) Connections between the Pacific ocean tropics and midlatitudes on decadal timescales. J Clim 13:1173–1194

    Article  Google Scholar 

  • Rasmusson EM, Carpenter TH (1981) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Weather Rev 110:354–384

    Article  Google Scholar 

  • Reiter ER (1978) Long-term wind variability in the tropical Pacific, its possible causes and effects. Mon Weather Rev 106:324–330

    Article  Google Scholar 

  • Ren H-L, Jin F-F (2013) Recharge oscillator mechanisms in two types of ENSO. J Clim. doi:10.1175/JCLI-D-12-00601.1

    Google Scholar 

  • Richter I et al (2013) Multiple causes of interannual sea surface temperature variability in the equatorial Atlantic ocean. Nat Geosci 6:43–47

    Google Scholar 

  • Rogers JC (1981) The north Pacific oscillation. J Clim 1:39–57

    Article  Google Scholar 

  • Ropelewski CF, Halpert MS (1986) North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon Weather Rev 114:2352–2362

    Article  Google Scholar 

  • Ropelewski CF, Halpert MS (1996) Quantifying Southern Oscillation–precipitation relationships. J Clim 9:1043–1059

    Article  Google Scholar 

  • Schneider DP, Steig EJ (2008) Ice cores record significant 1940s Antarctic warmth related to tropical climate variability. Proc Natl Acad Sci 105:12154–12158

    Article  Google Scholar 

  • Shukla J et al (2000) Dynamical seasonal prediction. Bull Am Meteorol Soc 81:2593–2606

    Article  Google Scholar 

  • Trenberth KE (1976) Spatial and temporal variations of the Southern Oscillation. Q J R Meteorol Soc 102:639–653

    Article  Google Scholar 

  • Trenberth KE (1997) The definition of El Niño. Bull Am Meteorol Soc 78:2771–2777

    Article  Google Scholar 

  • Trenberth KE, Shea DJ (1987) On the evolution of the Southern Oscillation. Mon Weather Rev 115:3078–3096

    Article  Google Scholar 

  • Trenberth KE et al (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res 103:14291–14324

    Article  Google Scholar 

  • van Loon HL, Shea DJ (1985) The Southern Oscillation Part IV: the precursors south of 15°S to the extremes of the oscillation. Mon Weather Rev 113:2063–2074

    Article  Google Scholar 

  • van Loon HL, Shea DJ (1987) The Southern Oscillation Part VI: anomalies of sea level pressure on the southern hemisphere and of the Pacific sea surface temperature during the development of a warm event. Mon Weather Rev 115:370–379

    Article  Google Scholar 

  • Vimont DJ, Battisti S, Hirst AC (2001) Footprinting, A seasonal connection between the tropics and mid-latitudes. Geophys Res Lett 28:3923–3926

    Article  Google Scholar 

  • Vimont DJ, Wallace JM, Battisti S (2003a) The seasonal footprinting mechanism in the Pacific: implications for ENSO. J Clim 16:2668–2675

    Article  Google Scholar 

  • Vimont DJ, Battisti S, Hirst AC (2003b) The seasonal footprinting mechanism in the CSIRO general circulation models. J Clim 16:2653–2667

    Article  Google Scholar 

  • Vimont DJ, Alexander MA, Newman M (2014) Optimal growth of central and east Pacific ENSO events. Geophys Res Lett. doi:10.1002/2014GL059997

    Google Scholar 

  • Walker GT, Bliss EW (1932) World Weather V. Mem R Meteorol Soc 4:53–83

    Google Scholar 

  • Wang S-Y, L’Heureux M, Chia H-H (2012) ENSO prediction one year in advance using western North Pacific sea surface temperatures. Geophys Res Lett. doi:10.1029/2012GL050909

    Google Scholar 

  • Wen C, Kumar A, Xue Y, McPhaden MJ (2014) Changes in tropical Pacific thermocline depth and their relationship to ENSO after 1999. J Clim. doi:10.1175/JCLI-D-13-00518.1

    Google Scholar 

  • Wu S, Wu LX, Liu QY, Xie S-P (2010) Development processes of the Tropical Pacific Meridional Mode. Adv Atmos Sci 27:95–99

    Article  Google Scholar 

  • Wyrtki K (1985) Water displacements in the Pacific and the genesis of El Niño cycles. J Geophys Res Oceans 90:7129–7132

    Article  Google Scholar 

  • Xie S (1999) A dynamic ocean–atmosphere model of the tropical Atlantic decadal variability. J Clim 12:64–70

    Article  Google Scholar 

  • Yu J-Y, Kim S-T (2011) Relationships between extratropical sea level pressure variations and the central Pacific and eastern Pacific types of ENSO. J Clim. doi:10.1175/2010JCLI3688.1

    Google Scholar 

  • Yu J-Y, Lu M-M, Kim S-T (2012) A change in the relationship between tropical central Pacific SST variability and the extratropical atmosphere around 1990. Environ Res Lett. doi:10.1088/1748-9326/7/3/034025

    Google Scholar 

  • Zhang L, Chang P, Ji L (2009) Linking the Pacific meridional mode to ENSO: coupled model analysis. J Clim 22:3488–3505

    Article  Google Scholar 

  • Zheng XG, Nakamura H, Renwick JA (2000) Potential predictability of seasonal means based on monthly time series of meteorological variables. J Clim 13:2591–2604

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Energy (DE-SC0004975 to B.T.A.). This research was also carried out in part under the auspices of the Cooperative Institute of Marine and Atmospheric Studies (CIMAS), a Cooperative Institute of the University of Miami and the National Oceanic and Atmospheric Administration (NOAA), cooperative agreement #NA10OAR4320143 (R.C.P.). Additional support was provided by NOAA’s Atlantic Oceanographic and Meteorological Laboratory (R.C.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce T. Anderson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderson, B.T., Perez, R.C. ENSO and non-ENSO induced charging and discharging of the equatorial Pacific. Clim Dyn 45, 2309–2327 (2015). https://doi.org/10.1007/s00382-015-2472-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2472-x

Keywords

Navigation