Skip to main content

Advertisement

Log in

Global seasonal climate predictability in a two tiered forecast system: part I: boreal summer and fall seasons

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This paper shows demonstrable improvement in the global seasonal climate predictability of boreal summer (at zero lead) and fall (at one season lead) seasonal mean precipitation and surface temperature from a two-tiered seasonal hindcast forced with forecasted SST relative to two other contemporary operational coupled ocean–atmosphere climate models. The results from an extensive set of seasonal hindcasts are analyzed to come to this conclusion. This improvement is attributed to: (1) The multi-model bias corrected SST used to force the atmospheric model. (2) The global atmospheric model which is run at a relatively high resolution of 50 km grid resolution compared to the two other coupled ocean–atmosphere models. (3) The physics of the atmospheric model, especially that related to the convective parameterization scheme. The results of the seasonal hindcast are analyzed for both deterministic and probabilistic skill. The probabilistic skill analysis shows that significant forecast skill can be harvested from these seasonal hindcasts relative to the deterministic skill analysis. The paper concludes that the coupled ocean–atmosphere seasonal hindcasts have reached a reasonable fidelity to exploit their SST anomaly forecasts to force such relatively higher resolution two tier prediction experiments to glean further boreal summer and fall seasonal prediction skill.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. We also compare the FISH50 AROC with the rest of the National Multi-Model Ensemble (NMME) models in “Appendix”.

References

  • Bacmeister J, Pegion PJ, Schubert SD, Suarez MJ (2000) An atlas of seasonal means simulated by the NSIPP 1 atmospheric GCM, vol 17. NASA Tech. Memo. 104606, Goddard Space Flight Center, Greenbelt, p 194

  • Barnett TP, Bengtsson L, Arpe K, Flugel M, Graham N, Latif M, Ritchie J, Roeckner E, Schlese U, Schulzweida U, Tyree M (1993) Forecasting global ENSO-related climate anomalies. Tellus 46A:381–397

    Google Scholar 

  • Bengtsson L, Schlese U, Roeckner E, Latif M, Barnett T, Graham N (1993) A two-tiered approach to long-range climate forecasting. Science 261:1026–1029

    Article  Google Scholar 

  • Berger AL (1978) Long-term variations of daily insolation and quaternary climate changes. J Atmos Sci 25:2362–2367

    Article  Google Scholar 

  • Bohn TJ, Sonessa MY, Lettenmaier DP (2010) Do multi-model ensemble average always yield improvements in forecast skill? J Hydromet. doi:10.1175/2010JHM1267.1

    Google Scholar 

  • Cantelaube P, Terres J-M (2005) Seasonal weather forecast for crop yield modeling in Europe. Tellus A 57:476–487

    Article  Google Scholar 

  • Challinor AJ, Slingo JM, Wheeler TJ, Doblas-Reyes FJ (2005) Probabilistic simulations of crop yield over western India using the DEMETER seasonal hindcast ensembles. Tellus A 57:498–512

    Article  Google Scholar 

  • Chou M-D, Lee K-T (1996) Parameterizations for the absorption of solar radiation by water vapor and ozone. J Atmos Sci 53:1203–1208

    Article  Google Scholar 

  • Chou M-D, Suarez MJ (1994) An efficient thermal infrared radiation parameterization for use in general circulation models. Technical report series on global modeling and data assimilation, NASA/TM-1994-104606, 3, p 85

  • Chun H, Baik J (1998) Momentum flux by thermally induced interval gravity wave and its approximation for large-scale models. J Atmos Sci 55:3299–3310

    Article  Google Scholar 

  • Clark MP, Hay LE (2004) Use of medium-range numerical weather prediction model output to produce forecasts of streamflow. J Hydrometeorol 5:15–32

    Article  Google Scholar 

  • Clough SA, Shephard MW, Mlawer EJ, Delamere JS, Iacono MJ, Cady-Pereira K, Boaukabara S, Brown PD (2005) Atmospheric radiative transfer modeling: a summary of the AER codes. J Quant Spectrosc Radiat Transf 91:233–244

    Article  Google Scholar 

  • DelSole T, Shukla J (2012) Climate models produce skillful predictions of Indian summer monsoon rainfall. Geophys Res Lett 39:L09703. doi:10.1029/2012GL051279

    Article  Google Scholar 

  • DeWitt DG (2005) Retrospective forecasts of interannual sea surface temperature anomalies from 1982 to present using a directly coupled atmosphere–ocean general circulation model. Mon Weather Rev 133:2972–2995

    Article  Google Scholar 

  • Doblas-Reyes J et al (2005) A forecast quality assessment and end-to-end probabilistic multi-model seasonal forecast system using a malaria model. Tellus A 57:464–475

    Article  Google Scholar 

  • Drijfhout SS, Walsteijn FH (1998) Eddy induced heat transport in a coupled ocean-atmosphere anomaly model. J Phys Oceanogr 28:250–265

    Article  Google Scholar 

  • Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley JD (2003) Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale 437 Eta model. J Geophys Res 108:8851. doi:10.1029/2002JD003296

    Article  Google Scholar 

  • Hack JJ (1994) Parameterization of moist convection in the National Center for Atmospheric Research Community Climate Model (CCM2). J Geophys Res 99:5551–5568

    Article  Google Scholar 

  • Holtsalag AAM, Boville BA (1993) Local versus nonlocal boundary-layer diffusion in a global climate model. J Clim 6:1825–1842

    Article  Google Scholar 

  • Hong S-Y, Pan H-L (1996) Nonlinear boundary layer vertical diffusion in a medium-range forecast model. Mon Weather Rev 124:2322–2339

    Article  Google Scholar 

  • Hong S-Y, Pan H-L (1998) Convective trigger function for a mass-flux cumulus parameterization scheme. Mon Weather Rev 126:2599–2620

    Article  Google Scholar 

  • Huang NE, Shen Z, Long SR, Wu MC, Shih EH, Zheng Q, Tung CC, Liu HH (1998) The empirical mode decomposition method and the Hilbert spectrum for non-stationary time series analysis. Proc R Soc Lond 454A:903–995

    Article  Google Scholar 

  • Hurrell JW, Bader D, Delworth T, Kirtman B, Meehl J, Pan HL, Wielicki B (2007) White paper on seamless prediction. Available at http://www.cgd.ucar.edu/cas/jhurrell/Docs/SeamlessModellingDraft03302007.pdf

  • Kain JS, Fritsch JM (1993) Convective parameterization for mesoscale models: the Kain-Fritsch scheme. The representation of cumulus convection in numerical models, Meteorol. Monogr., No. 46, Am Meteorol Soc 165–170

  • Kanamitsu M, Ebusuzaki W, Woollen J, Yang S-K, Hnilo J, Fiorino M, Potter GL (2002a) NCEP-DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643

    Article  Google Scholar 

  • Kanamitsu M et al (2002b) NCEP dynamical seasonal forecast system 2000. Bull Am Meteorol Soc 83:1019–1037

    Article  Google Scholar 

  • Kanamitsu M, Yoshimura K, Yhang Y-B, Hong S-Y (2010) Errors of interannual variability and multi-decadal trend in dynamical regional climate downscaling and its corrections. J Geophys Res 115:D17115. doi:10.1029/2009JD013511

    Article  Google Scholar 

  • Kirtman BP (2003) The COLA anomaly coupled model: ensemble ENSO prediction. Mon Weather Rev 10:2324–2341

    Article  Google Scholar 

  • Kirtman BP, Min D (2009) Multimodel ensemble ENSO prediction with CCSM and CFS. Mon Weather Rev 137:2908–2930

    Article  Google Scholar 

  • Kirtman BP, Fan Y, Schneider EK (2002) The COLA coupled and anomaly coupled ocean-atmosphere GCM. J Clim 15:2301–2320

    Article  Google Scholar 

  • Kirtman BP et al. (2013) The North American Multi-Model Ensemble (NMME) for intra-seasonal to interannual prediction. Bull Am Met Soc (Submitted)

  • LaRow TE (2013) The impact of SST bias correction in north Atlantic hurricane retrospective forecasts. Mon Weather Rev 141:490–498

    Article  Google Scholar 

  • Mason SJ, Graham NE (1999) Conditional probabilities, relative operating characteristics, and relative operating levels. Weather Forecast 14:713–725

    Article  Google Scholar 

  • Mason SJ, Graham NE (2002) Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: significance and interpretation. Quart J R Meteorol Soc 128:2145–2166

    Article  Google Scholar 

  • McFarlane NA (1987) The effects of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J Atmos Sci 44:1775–1800

    Article  Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high resolution grids. Int J Climatol 25:693–712

    Article  Google Scholar 

  • Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102(14):16663–16682

    Article  Google Scholar 

  • Moorthi S, Suarez MJ (1992) Relaxed Arakawa-Schubert. A parameterization of moist convection for general circulation models. Mon Weather Rev 120:978–1002

    Article  Google Scholar 

  • Morse AP, Doblas-Reyes FJ, Hoshen MB, Hagedorn R, Palmer TN (2005) A forecast quality assessment of an end-to-end probabilistic multi-model seasonal forecast system using a malaria model. Tellus A 57:464–475

    Article  Google Scholar 

  • Oleson KW et al. (2004) Technical description of the community land model (CLM). Technical report. NCAR/TN-461+STR, NCAR, Boulder, p 174

  • Palmer TN, Brankovic C, Richardson DS (2000) A probability and decision model analysis of PROVOST seasonal multimodel ensemble integrations. Quart J R Meteor Soc 126:2013–2034

    Article  Google Scholar 

  • Palmer TN et al (2004) Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER). Bull Am Meteorol Soc 85:853–872

    Article  Google Scholar 

  • Palmer TN, Doblas-Reyes FJ, Weisheimer A, Rodwell MJ (2008) Toward seamless prediction: calibration of climate change projections using seasonal forecasts. Bull Am Meteorol Soc 89:459–470

    Article  Google Scholar 

  • Palmer TN, Doblas-Reyes FJ, Weisheimer A, Rodwell MJ (2009) Toward seamless prediction: calibration of climate change projections using seasonal forecasts reply. Bull Am Meteorol Soc 90:1551–1554

    Article  Google Scholar 

  • Ramanathan V, Downey P (1986) A nonisothermal emissivity and absorptivity formulation for water vapor. J Geophys Res 91:8649–8666

    Article  Google Scholar 

  • Saha S et al (2006) The climate forecast system at NCEP. J Clim 19:3483–3517. doi:10.1175/JCLI3812.1

    Article  Google Scholar 

  • Saha S et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91:1015–1057

    Article  Google Scholar 

  • Saha S et al. (2013) The NCEP climate forecast system version 2. J. climate. Available from http://cfs.ncep.noaa.gov/cfsv2.info/CFSv2_paper.pdf. (Submitted)

  • Shapiro M et al (2010) An earth-system prediction initiative for the twenty-first century. Bull Am Soc 91:1377–1388

    Article  Google Scholar 

  • Shimpo A, Kanamitsu M, Iacobellis SF, Hong S-Y (2008) Comparison of four cloud schemes in simulating the seasonal mean field forced by the observed sea surface temperature. Mon Weather Rev 136:2557–2575

    Article  Google Scholar 

  • Shukla J (1998) Predictability in the midst of chaos: a scientific basis for climate forecasting. Science 282:728–731

    Article  Google Scholar 

  • Shukla J, Anderson J, Baumhefner D, Brankovic C, Chang Y, Kalnay E, Marx L, Palmer T, Paolino DA, Ploshay J, Schubert S, Straus DM, Suarez M, Tribbia J (2000) Dynamical seasonal prediction. Bull Am Meteorol Soc 81:2593–2606

    Article  Google Scholar 

  • Shukla J et al (2009) Revolution in climate prediction is both necessary and possible. A declaration at the world modeling summit for climate prediction. Bull Am Soc 2:175–178

    Article  Google Scholar 

  • Shukla J, Palmer TN, Hagedorn R, Hoskins B, Kinter J, Marotzke J, Miller M, Slingo J (2010) Toward a new generation of world climate research and computing facilities. Bull Am Meteorol Soc 91:1407–1412

    Article  Google Scholar 

  • Shukla S, Voisin N, Lettenmaier DP (2012) Value of medium range weather forecasts in the improvement of seasonal hydrologic prediction skill. Hydrol Earth Syst Sci Dis 9:1827–1857

    Article  Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296

    Article  Google Scholar 

  • Stockdale TN, Anderson DLT, Balmaseda MA, Doblas-Reyes FJ, Ferranti L, Mogensen K, Palmer TN, Molteni F, Vitart F (2011) ECMWF seasonal forecast system 3 and its prediction of sea surface temperature. Clim Dyn 37:455–471

    Article  Google Scholar 

  • Taylor KE, William D, Zwiers F (2000) The SST and seaice boundary conditions for AMIPII simulation. PCMDI report 60. Available from http://www-pcmdi.llnl.gov/projects/amip/AMIP2EXPDSN/BCS/amip2bcs.php. p 24

  • Tiedtke M (1983) The sensitivity of the time-mean large-scale flow to cumulus convection in the ECWMF model. In: Proceedings of ECMWF workshop on convection in large-scale models. European Centre for Medium-Range Forecasts, Reading, United Kingdom, pp 297–316

  • Wang B et al (2009) Advance and prospectus of seasonal prediction: assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980–2004). Clim Dyn 33:93–117

    Article  Google Scholar 

  • Wu Z, Huang NE (2009) Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal 1:1–41

    Article  Google Scholar 

  • Wu Z, Huang NE, Chen X (2009) The multi-dimensional ensemble empirical mode decomposition method. Adv Adapt Data Anal 1:339–372

    Article  Google Scholar 

  • Wu Z, Huang NE, Wallace JM, Smoliak B, Chen X (2011) On the time-varying trend in global-mean surface temperature. Clim Dyn 37:759–773. doi:10.1007/s00382-011-1128-8

    Article  Google Scholar 

  • Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558

    Article  Google Scholar 

  • Zhang GJ, McFarlane NA (1995) Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos Ocean 33:407–446

    Article  Google Scholar 

  • Zhang S, Harrison MJ, Rosati A, Wittenberg AT (2007) System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies. Mon Weather Rev 135(10). doi:10.1175/MWR3466.1

Download references

Acknowledgments

This paper is dedicated to the memory of Dr. Masao Kanamitsu, without whose pioneering development of the FISH50 AGCM this work would not have been possible. This work was supported by Grants from NOAA (NA12OAR4310078, NA10OAR4310215, NA11OAR4310110), USGS (06HQGR0125), and USDA (027865). All computations for this paper were done on the computational resources provided by the Extreme Science and Engineering Discovery Environment (XSEDE) under TG-ATM120017 and TG-ATM120010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasubandhu Misra.

Appendix: Comparison of FISH50 with the other national multi-model ensemble (NMME) models

Appendix: Comparison of FISH50 with the other national multi-model ensemble (NMME) models

A multi-institutional NMME (Kirtman et al. 2013; http://www.cpc.ncep.noaa.gov/products/ctb/nmme/) project was initiated to conduct a comprehensive set of seasonal retrospective forecasts from multiple modeling centers in North America. They are archived and made available through the website of the International Research Institute for Climate and Society, Columbia University (http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/). The NMME also maintains the seasonal forecasts in real time hosted by the Climate Prediction Center of the National Centers for Environmental Prediction, NOAA (http://www.cpc.ncep.noaa.gov/products/NMME/archive/). Here we compare the AROC across these NMME models for the two seasons JJA and SON at zero and one season lead for precipitation and surface temperature with FISH50. A brief outline of the NMME model resolution and their references are provided in the Table below.

See Figs. 18, 19 and 20; Table 2.

Fig. 18
figure 18

Area under the ROC averaged over global oceans for a JJA, b SON, over tropical oceans for c JJA, and d SON for low, middle, and upper terciles of NMME and FISH50 precipitation

Fig. 19
figure 19

Area under the ROC averaged over global land for a JJA, b SON, over tropical land for c JJA, and d SON for low, middle, and upper terciles of NMME and FISH50 precipitation

Fig. 20
figure 20

Area under the ROC averaged over global land for a JJA, b SON, over tropical land for c JJA, and d SON for low, middle, and upper terciles of NMME and FISH50 surface temperature

Table 2 National multi-model ensemble (NMME) models

Rights and permissions

Reprints and permissions

About this article

Cite this article

Misra, V., Li, H., Wu, Z. et al. Global seasonal climate predictability in a two tiered forecast system: part I: boreal summer and fall seasons. Clim Dyn 42, 1425–1448 (2014). https://doi.org/10.1007/s00382-013-1812-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1812-y

Keywords

Navigation