Skip to main content

Advertisement

Log in

Quantitative reconstruction of the last interglacial vegetation and climate based on the pollen record from Lake Baikal, Russia

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Changes in mean temperature of the coldest (T c) and warmest month (T w), annual precipitation (P ann) and moisture index (α) were reconstructed from a continuous pollen record from Lake Baikal, Russia. The pollen sequence CON01-603-2 (53°57′N, 108°54′E) was recovered from a 386 m water depth in the Continent Ridge and dated to ca. 130–114.8 ky BP. This time interval covers the complete last interglacial (LI), corresponding to MIS 5e. Results of pollen analysis and pollen-based quantitative biome reconstruction show pronounced changes in the regional vegetation throughout the record. Shrubby tundra covered the area at the beginning of MIS 5e (ca. 130–128 ky), consistent with the end of the Middle Pleistocene glaciation. The late glacial climate was characterised by low winter and summer temperatures (T c ~ −38 to −35°C and T w~11–13°C) and low annual precipitation (P ann~300 mm). However, the wide spread of tundra vegetation suggests rather moist environments associated with low temperatures and evaporation (reconstructed α~1). Tundra was replaced by boreal conifer forest (taiga) by ca. 128 ky BP, suggesting a transition to the interglacial. Taiga-dominant phase lasted until ca. 117.4 ky BP, e.g. about 10 ky. The most favourable climate conditions occurred during the first half of the LI. P ann reached 500 mm soon after 128 ky BP. However, temperature changed more gradually. Maximum values of T c ~ −20°C and T w~16–17°C are reconstructed from about 126 ky BP. Conditions became gradually colder after ca. 121 ky BP. T c dropped to ~ −27°C and T w to ~15°C by 119.5 ky BP. The reconstructed increase in continentality was accompanied by a decrease in P ann to ~400–420 mm. However, the climate was still humid enough (α~0.9) to support growth of boreal evergreen conifers. A sharp turn towards a dry climate is reconstructed after ca. 118 ky BP, causing retreat of forest and spread of cool grass-shrub communities. Cool steppe dominated the vegetation in the area between ca. 117.5 ky and 114.8 ky BP, suggesting the end of the interglacial and transition to the last glacial (MIS 5d). Shift to the new glaciation was characterised by cool and very dry conditions with T c ~ −28 to −30°C, T w~14–15°C, P ann~250 mm and α~0.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alpat’ev AM, Arkhangel’skii AM, Podoplelov NY, Stepanov AY (1976) Fizicheskaya geografiya SSSR (Aziatskaya chast’) (in Russian). Vysshaya Shkola, Moscow

    Google Scholar 

  • Andreev AA, Grosse G, Schirrmeister L, Kuzmina SA, Novenko EY, Bobrov AA, Tarasov PE, Ilyashuk BP, Kuznetsova TV, Krbetschek M, Meyer H, Kunitsky VV (2004) Late Saalian and Eemian palaeoenvironmental history of the Bol’shoy Lyakhovsky, Island Laptev Sea region, Arctic Siberia. Boreas 33:319–348

    Article  Google Scholar 

  • Andreev AA, Tarasov PE, Siegert C, Ebel T, Klimanov VA, Melles M, Bobrov A, Dereviagin AY, Lubinski D, Hubberten H-W (2003) Late Pleistocene vegetation and climate on the northern Taymyr Peninsula, Arctic Russia. Boreas 32:484–505

    Article  Google Scholar 

  • Battarbee RW, Davydova NN, Digerfeldt G, Eronen M, Gaillard M-J, Gliemeroth AK, Hannon G, Harrison SP, Hofmann W, Liew PM, Lotter AF, Loeffler H, Marciniak B, Smol JP, Tarasov PE (1998) Biological records of climate change in lake sediments. Paläoklimaforschung/Palaeoclimate Res 25:161–167

    Google Scholar 

  • BDP Members (2004) High-resolution sedimentary record in a new BDP-99 core from Posol’sk Bank in Lake Baikal. Russ Geol Geophys 25(2):163–194

    Google Scholar 

  • Berger A (1978) Long term variations of daily insolations and Quaternary climatic changes. J Atmos Sci 35(12):2362–2367

    Article  Google Scholar 

  • Bezrukova EV (1999) Paleogeografiya Pribaikal’ya v pozdnelednikov’e i golotsene (in Russian). Nauka, Novosibirsk

    Google Scholar 

  • Bezrukova EV, Letunova PP (2001) A high-resolution record of east Siberian paleoclimates in the Early and Middle Pleistocene by palynological studies of Baikal sediments from the deep borehole BDP-96-1 (in Russian, with English Abstract). Geologiya Geofizika 42:98–107

    Google Scholar 

  • Bigelow NH, Brubaker LB, Edwards ME, Harrison SP, Prentice CI, Anderson PM, Bartlein PJ, Christensen TR, Cramer W, Kaplan JO, Lozhkin AV, Matveyeva NV, Murray DF, Mc Guire AD, Razzhivin VY, Ritchie JC, Smith B, Walker DA, Gajewski K, Wolf V, Holmquist BH, Igarashi Y, Kremenetskii K, Paus A, Pisaric MFJ, Volkova VS (2003) Climate change and Arctic ecosystems:1. Vegetation changes north of 55°N between the last glacial maximum, mid-Holocene, and present. J Geophys Res 108, NO D19, 8170. DOI 10.1029/2002JD002558

  • Channell JET (1999) Geomagnetic paleointensity and directional secular variation at Ocean Drilling Program (ODP) site 984 (Bjorn Drift) since 500 ka: comparison with ODP site 983 (Gardar drift). J Geophys Res 104:22937–22951

    Article  Google Scholar 

  • Charlet F, Fagel N, De Batist M, Hauregard F, Minnebo B, Meischner D, SONIC Team (2005) Sedimentary dynamics on isolated highs in Lake Baikal: evidence from detailed high-resolution geophysical data and sediment cores. Global Planet Change 46(1–4):125–144

    Google Scholar 

  • Cheddadi R, Lamb HF, Guiot J, van der Kaars S (1998a) Holocene climatic change in Marocco: a quantitative reconstruction from pollen data. Clim Dyn 14:883–890

    Article  Google Scholar 

  • Cheddadi R, Mamakowa K, Guiot J, de Beaulieu J-L, Reille M, Andrieu V, Granoszewski W, Peyron O (1998b) Was the climate of the Eemian stable? A quantitative climate reconstruction from seven European pollen records. Palaeogeogr Palaeoclim Palaeoecol 143:73–85

    Article  Google Scholar 

  • Climatic atlas of Asia (1981) Gidrometeoizdat, Leningrad

  • Demory F, Nowaczyk NR, Bluszcz A, Demske D, Granoszewski W, Witt A, Oberhänsli H (2005) High-resolution magnetostratigraphy of late Quaternary sediments from Lake Baikal, Siberia: age models and time lag between marine and intracontinetal climatic responses. Global Planet Change 46(1–4):167–186

    Article  Google Scholar 

  • Dylis NV, Reshchikov LI, Malyshev LI (1965) Rastitel’nost. In: Preobrazhenskii VS, Pomus MI, Sochava VB (eds) Predbaikal’e i Zabaikal’e (in Russian). Nauka, Moscow, pp 225–281

    Google Scholar 

  • Frenzel B, Pecsi B, Velichko AA (eds) (1992) Atlas of Palaeoclimates and Palaeoenvironments of the Northern Hemisphere, Late Pleistocene–Holocene. Hungarian Academy of Sciences, Budapest, Gustav Fisher Verlag, Stuttgart

    Google Scholar 

  • Frogley MR, Tzedakis PC, Heaton THE (1999) Climate variability in Northwest Greece during the last interglacial. Science 285:1886–1889

    Article  PubMed  Google Scholar 

  • Galaziy GI (ed) (1993) Baikal Atlas (in Russian). Federal Agency for Geodesy and Cartography of Russia, Moscow

    Google Scholar 

  • Granoszewski W, Demske D, Nita M, Heumann G, Andreev AA (2005) Vegetation and climate variability during the last interglacial evidenced in the pollen record from Lake Baikal. Global Planetary Change 46(1–4):187–198

    Article  Google Scholar 

  • Goldberg EL, Grachev MA, Edgington DN, Navez J, Andre L, Chebykin EP, Shul’pyakov IO (2001) Direct U–Th dating of the last two interglacials in sediments of Lake Baikal. DAN 381:805–808

    Google Scholar 

  • Grachev MA, Vorobyova SS, Khlystov OM, Bezrukova EV, Weinberg EV, Goldberg EL, Granina LZ, Kornakova EG, Lazo FI, Levina OV, Letunova PP, Otinov PV, Pirog VV, Fedotov AP, Yaskevich SA, Bobrov VA, Sukhorukov FV, Rezchikov VI, Fedorin MA, Zolotarev KV, Kravchinsky VA (1997) Signal of the paleoclimates of Upper Pleistocene in the sediments of Lake Baikal. Russ Geol Geophys 38:957–980

    Google Scholar 

  • Grichuk VP (1969) Opyt rekonstruktsii nekotorykh elementov klimata Severnogo polushariya v atlanticheskii period golotsena. In: Neustadt MI (ed) Holocene. Nàuka, Moscow, pp 41–57

    Google Scholar 

  • Grichuk VP (1984) Late Pleistocene vegetation history. In: Velichko AA (ed) Late quaternary environments of the Soviet Union. University of Minnesota Press, Minneapolis, pp 155–178

    Google Scholar 

  • Guiot J, Pons A, de Beaulieu J-L, Reille M (1989) A 140,000 year climatic reconstruction from two European pollen records. Nature 338:309–313

    Article  Google Scholar 

  • Guiot J (1990) Methodology of the last climatic cycle reconstruction from pollen data. Palaeogeogr Palaeoclimatol Palaeoecol 80:49–69

    Article  Google Scholar 

  • Gunin PD, Vostokova EA, Dorofeyuk NI, Tarasov PE, Black CC (1999) Vegetation dynamics of Mongolia Geobotany 26. Kluwer, Dordrecht

    Google Scholar 

  • Harrison SP, Kutzbach JE, Prentice IC, Behling PJ, Sykes MT (1995) The response of Northern Hemisphere extratropical climate and vegetation to orbitally induced changes in insolation during the last interglacial. Quat Res 43:174–184

    Article  Google Scholar 

  • Horiuchi K, Minoura K, Hoshino K, Oda T, Nakamura T, Kawai T (2000) Palaeoenvironmental history of Lake Baikal during the last 23000 years. Palaeogeogr Palaeoclim Palaeoecol 157:95–108

    Article  Google Scholar 

  • Hutchinson DR, Golmshtok AJ, Zonenshain LP, Moore TC, Scholz CA, Klitgord KD (1992) Depositional and tectonic framework of the rift basins of Lake Baikal from multichannel seismic data. Geology 20:589–592

    Article  Google Scholar 

  • Imbrie J, Hays J, Martinson DG, McIntyre A, Mix AC, Morley JJ, Pisias NG, Prell WL, Shackleton NJ (1984) The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ18O record. In: Berger A, Imbrie J, Hays J, Kukla G, Saltzman B (eds) Milankovitch and climate. Reidel, Dordrecht Holland, pp 269–305

    Google Scholar 

  • Jouzel J, Barkov NI, Barnola JM, Bender M, Chapellaz J, Genthon C, Kotlyakov VM, Lipenkov V, Lorius C, Petit JR, Raynaud D, Raisbeck G, Ritz C, Sowers T, Stievenard M, Yiou F, Yiou P (1993) Extending the Vostok ice-core record of palaeoclimate to the penultimate glacial period. Nature 364:407–412

    Article  Google Scholar 

  • Karabanov EB, Prokopenko AA, Williams DF, Khursevich GK (2000) Evidence for mid-Eemian cooling in continental climatic record from Lake Baikal. J Paleolomnology 23:365–371

    Article  Google Scholar 

  • Khursevich GK, Karabanov EB, Prokopenko AA, Williams DF, Kuzmin MI, Fedenya SA, Gvozdkov AA (2001) Insolation regime in Siberia as a major factor controlling diatom production in Lake Baikal during the past 800,000 years. Quat Intern 90–91:47–58

    Google Scholar 

  • Klimanov VA (1984) Paleoclimatic reconstructions based on the information-statistical method. In: Velichko AA (ed) Late quaternary environments of the Soviet Union. University of Minnesota Press, Minneapolis, pp 297–303

    Google Scholar 

  • Klotz S, Guiot J, Mosbrugger V (2003) Continental European Eemian and early Würmian climate evolution: comparing signals using different quantitative reconstruction approaches based on pollen. Global Planet Change 36:277–294

    Article  Google Scholar 

  • Kubatzki C, Montoya M, Rahmstorf S, Ganopolski A, Claussen M (2000) Comparison of a coupled global model of intermediate complexity and an AOGCM for the last interglacial. Clim Dyn 14:461–471

    Article  Google Scholar 

  • Kühl N, Gebhardt C, Litt T, Hense A (2002) Probability density functions as botanical-climatological transfer functions for climate reconstruction. Quat Res 58:381–392

    Article  Google Scholar 

  • Kühl N, Litt T (2003) Quantitative time series reconstruction of Eemian temperature at three European sites using pollen data. Veget Hist Archaeobot 12:205–214

    Article  Google Scholar 

  • Kukla GJ (2000) The last interglacial. Science 287:987–988

    Article  Google Scholar 

  • Lambeck K, Chappell J (2001) Sea level change through the Last Glacial cycle. Science 292:679–685

    Article  PubMed  Google Scholar 

  • Martinson DG, Pisias NG, Hays J, Imbrie J, Moore TC, Shackleton NJ (1987) Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300,000 year chronostratigraphy. Quat Res 27:1–29

    Article  Google Scholar 

  • McManus JF, Bond GC, Broecker WS, Johnsen S, Labeyrie L, Higgins S (1994) High resolution climate records from the North Atlantic during the last interglacial. Nature 371:326–329

    Article  Google Scholar 

  • Molozhnikov VN (1986) Plant communities of Pribaikalie (Rastitel’nye soobshchestva Pribaikal’ya) (in Russian). Novosibirsk, Nauka

    Google Scholar 

  • Nakagawa T, Tarasov P, Kotoba N, Gotanda K, Yasuda Y (2002) Quantitative pollen-based climate reconstruction in Japan: application to surface and late Quaternary spectra. Quat Sci Rev 21:2099–2113

    Article  Google Scholar 

  • New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Clim Res 21:1–25

    Article  Google Scholar 

  • Prentice I, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM (1992) A global biome model based on plant physiology and dominance, soil properties and climate. J Biogeogr 19:117–134

    Article  Google Scholar 

  • Prentice IC, Guiot J, Huntley B, Jolly D, Cheddadi R (1996) Reconstructing biomes from palaecological data: a general method and its application to European pollen data at 0 and 6 ka. Clim Dyn 12:185–194

    Article  Google Scholar 

  • Prokopenko AA, Williams DF (2004) Deglacial methane emission signals in the carbon isotopic record of Lake Baikal. Earth Planet Sci Lett 218:135–147

    Article  Google Scholar 

  • Rindzyunskaya NM, Pakhomov MM (1977) K stratigrafii chetvertichnykh otlozhenii Severo-Baikal’skogo nagor’ya (in Russian). Izvestiya AN SSSR Ser Geol 4:146–149

    Google Scholar 

  • Rioual P, Andrieu-Ponel V, Rietti-Shati M, Battarbee RW, de Beaulieu J-L, Cheddadi R, Reille M, Svobodova H, Shemesh A (2001) High-resolution record of climate stability in France during the last interglacial period. Nature 413:293–296

    Article  PubMed  Google Scholar 

  • Rioual P, Mackay A (2005) A diatom record of centennial resolution for the Kazantsevo Interglacial stage in Lake Baikal (Siberia). Global Planet Change 46(1–4):199–219

    Article  Google Scholar 

  • Solovieva N, Tarasov PE, MacDonald G (2005) Quantitative reconstruction of Holocene climate from the Chuna Lake pollen record, Kola Peninsula, northwest Russia. Holocene 15(1):141–148

    Article  Google Scholar 

  • Tarasov PE, Webb III T, Andreev AA, Afanaseva NB, Berezina NA, Bezusko LG, Blyakharchuk TA, Bolikhovskaya NS, Cheddadi R, Chernavskaya MM, Chernova GM, Dorofeyuk NI, Dirksen VG, Elina GA, Filimonova LV, Glebov FZ, Guiot J, Gunova GS, Harrison SP, Jolly D, Khomutova VI, Kvavadze EV, Osipova IM, Panova NK, Prentice IC, Saarse L, Sevastyanov DV, Volkova VS, Zernitskaja VP (1998a) Present-day and mid-Holocene biomes reconstructed from pollen and plant macrofossil data from former Soviet Union and Mongolia. J Biogeogr 25:1029–1053

    Article  Google Scholar 

  • Tarasov PE, Cheddadi R, Guiot J, Bottema S, Peyron O, Belmonte J, Ruiz-Sanchez V, Saadi FA, Brewer S (1998b) A method to determine warm and cool steppe biomes from pollen data; application to the Mediterranean and Kazakhstan regions. J Quat Sci 13:335–344

    Article  Google Scholar 

  • Tarasov PE, Peyron O, Guiot J, Brewer S, Volkova VS, Bezusko LG, Dorofeyuk NI, Kvavadze EV, Osipova IM, Panova NK (1999) Last Glacial maximum climate of the Former Soviet Union and Mongolia reconstructed from pollen and plant macrofossil data. Clim Dyn 15:227–240

    Article  Google Scholar 

  • Tarasov PE, Volkova VS, Webb III T, Guiot J, Andreev AA, Bezusko LG, Bezusko TV, Bykova GV, Dorofeyuk NI, Kvavadze EV, Osipova IM, Panova NK, Sevastyanov DV (2000) Last Glacial maximum biomes reconstructed from pollen and plant macrofossil data from Northern Eurasia. J Biogeogr 27:609–620

    Article  Google Scholar 

  • Tarasov PE, Dorofeyuk NI, Vipper PB (2002) The Holocene dynamics of vegetation in Buryatia. Stratigr Geol Corr 10:88–96

    Google Scholar 

  • Texier D, de Noblet N, Harrison SP, Haxeltine A, Jolly D, Joussaume S, Laarif F, Prentice IC, Tarasov P (1997) Quantifying the role of biosphere-atmosphere feedbacks in climate change: coupled model simulations for 6000 years BP and comparison with palaeodata for northern Eurasia and northern Africa. Clim Dyn 13:865–882

    Article  Google Scholar 

  • Tzedakis PC, Frogley MR, Heaton THE (2002) Duration of last interglacial conditions in northwestern Greece. Quat Res 58:53–55

    Article  Google Scholar 

  • Turner C (2000) The Eemian Interglacial in the North European plain and adjacent areas. Geologie Mijnbouw 79:217–231

    Google Scholar 

  • Velichko AA (ed) (1984) Late Quaternary environments of the Soviet Union. University of Minnesota Press, Minneapolis

  • Velichko AA, Borisova OK, Zelikson EM (2002) Paradoksy klimata poslednego mezhlednikov’ya. In: Spasskaya II (ed) Routes of evolutionary geography (summary and prospects), Institute of Geography (in Russian). Russian Academy of Sciences, Moscow, pp 207–239

    Google Scholar 

  • Wohlfarth B, Schwark L, Bennike O, Filimonova L, Tarasov P, Björkman L, Brunnberg L, Demidov I, Possnert G (2004) Unstable Early Holocene climatic and environmental conditions in northwestern Russia derived from a multidisciplinary study of a lake sediment sequence from Pichozero, southwestern Russian Karelia. Holocene 14(5):732–746

    Article  Google Scholar 

  • Yuan D, Cheng H, Edvards RL, Dykovski CA, Kelly MJ, Zhang M, Qing J, Lin Y, Wang Y, Wu J, Dorale JA, An Z, Cai Y (2004) Timing, duration, and transitions of the Last Interglacial Asian Monsoon. Science 304:575–578

    Article  PubMed  Google Scholar 

  • Zagwijn WH (1996) An analysis of Eemian climate in western and central Europe. Quat Sci Rev 15:451–469

    Article  Google Scholar 

  • Zhukov VM (1965) Klimat. In: Preobrazhenskii VS, Pomus MI, Sochava VB (eds) Predbaikal’e i Zabaikal’e (in Russian). Nauka, Moscow, pp 91–126

    Google Scholar 

Download references

Acknowledgements

This paper is part of the CONTINENT research project (http://www.continent.gfz-potsdam.de/) supported by the European Commission under the Fifth Framework Programme (Contract no. EVK2-2000-00057). W. Granoszewski was financed through this project. P. Tarasov acknowledges Alexander von Humboldt Foundation granted his research fellowship in Alfred Wegener Institute, Potsdam. We are grateful to P.J. Bartlein, T. Nakagawa and J.-C. Duplessy, for the critical review and suggestions, which helped to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Tarasov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarasov, P., Granoszewski, W., Bezrukova, E. et al. Quantitative reconstruction of the last interglacial vegetation and climate based on the pollen record from Lake Baikal, Russia. Climate Dynamics 25, 625–637 (2005). https://doi.org/10.1007/s00382-005-0045-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-005-0045-0

Keywords

Navigation