Skip to main content
Log in

Hyperbaric oxygen therapy reduces astrogliosis and helps to recovery brain damage in hydrocephalic young rats

  • Original Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Purpose

We investigated the possible beneficial effects that hyperbaric oxygen therapy could offer in different brain structures affected by ventriculomegaly in pup rats submitted to experimental hydrocephalus.

Methods

Seven-day-old Wistar rats were submitted to hydrocephalus by intracisternal injection of 10% kaolin into the cisterna magna. The animals were divided into four groups: control (n = 5); control with HBOT (3ATA/2 h/day) (n = 5); untreated hydrocephalic (n = 10); hydrocephalic treated with HBOT (3ATA/2 h/day) (n = 10). The treatment with HBOT was performed daily for 14 days post-induction of hydrocephalus. To evaluate the response to treatment, behavioral tests (open field, Morris water maze, and activity monitor) were performed. After 14 days, the animals were euthanized, and the brain was removed for histological (hematoxylin-eosin and solochrome-cyanine) and immunohistochemical (GFAP and Ki-67) studies.

Results

The hyperbaric treatment, although not causing changes in ventricular enlargement, resulted in a significant improvement in the behavioral performance (p = 0.0001), with greater agility and exploration of the environment, preservation of spatial memory, and greater learning capacity (p = 0.0001). Through the immunohistochemical study, the astrocytic activity (glial fibrillary acidic protein) in the corpus callosum (p = 0.0001) and in the germinative matrix (p = 0.0033) was significantly reduced as compared to that in the H group.

Conclusion

The results suggest that hyperbaric treatment bettered the behavioral performance and offered benefits to the structures affected by the ventricular increase helping to recover the brain damages. In this way, the HBOT it can be considered an adjuvant therapy for the treatment of hydrocephalus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Olopade FE, Shokunbi MT, Sirén AL (2012) The relationship between ventricular dilatation, neuropathological and neurobehavioural changes in hydrocephalic rats. Fluids Barriers CNS 9:19

    Article  PubMed  PubMed Central  Google Scholar 

  2. McAllister JP (2012) Pathophysiology of congenital and neonatal hydrocephalus. Semin Fetal Neonatal Med 17:285–294

    Article  PubMed  Google Scholar 

  3. Kiefer M, Eymann R, von Tiling S, Müller A, Steudel WI, Booz KH (1998) The ependyma in chronic hydrocephalus. Childs Nerv Syst 14:263–270

    Article  PubMed  CAS  Google Scholar 

  4. Mori K, Shimada J, Kurisaka M, Sato K, Watanabe K (1995) Classification of hydrocephalus and outcome of treatment. Brain and Development 17:338–348

    Article  PubMed  CAS  Google Scholar 

  5. Cosan TE, Gucuyener D, Dundar E, Arslantas A, Vural M, Uzuner K, Tel E (2001) Cerebral blood flow alterations in progressive communicating hydrocephalus: transcranial Doppler ultrasonography assessment in an experimental model. J Neurosurg 94:265–269

    Article  PubMed  CAS  Google Scholar 

  6. Higashi K, Asahisa H, Ueda N, Kobayashi K, Hara K, Noda Y (1986) Cerebral blood flow and metabolism in experimental hydrocephalus. Neurol Res 8:169–176

    Article  PubMed  CAS  Google Scholar 

  7. da Silva MC, Michowicz S, Drake JM, Chumas PD, Tuor UI (1995) Reduced local cerebral blood flow in periventricular white matter in experimental neonatal hydrocephalus-restoration with CSF shunting. J Cereb Blood Flow Metab 15:1057–1065

    Article  PubMed  Google Scholar 

  8. Shulyakov AV, Buist RJ, Del Bigio MR (2012) Intracranial biomechanics of acute experimental hydrocephalus in live rats. Neurosurgery 71:1032–1040

    Article  PubMed  Google Scholar 

  9. D'Agostino DP, Putnam RW, Dean JB (2007) Superoxide (*O2-) production in CA1 neurons of rat hippocampal slices exposed to graded levels of oxygen. J Neurophysiol 98:1030–1041

    Article  PubMed  CAS  Google Scholar 

  10. Tal S, Hadanny A, Sasson E, Suzin G, Efrati S (2017) Hyperbaric oxygen therapy can induce angiogenesis and regeneration of nerve fibers in traumatic brain injury patients. Front Hum Neurosci 11:508

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pan X, Chen C, Huang J, Wei H, Fan Q (2015) Neuroprotective effect of combined therapy with hyperbaric oxygen and madopar on 6-hydroxydopamine-induced Parkinson’s disease in rats. Neurosci Lett 600:220–225

    Article  PubMed  CAS  Google Scholar 

  12. Rossignol DA, Rossignol LW, James SJ, Melnyk S, Mumper E (2007) The effects of hyperbaric oxygen therapy on oxidative stress, inflammation, and symptoms in children with autism: an open-label pilot study. BMC Pediatr 7:36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Lu Z, Ma J, Liu B, Dai C, Xie T, Ma X, Li M, Dong J, Lan Q, Huang Q (2016) Hyperbaric oxygen therapy sensitizes nimustine treatment for glioma in mice. Cancer Med 5:3147–3155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Tan J, Zhang F, Liang F, Wang Y, Li Z, Yang J, Liu X (2014) Protective effects of hyperbaric oxygen treatment against spinal cord injury in rats via toll-like receptor 2/nuclear factor-κB signaling. Int J Clin Exp Pathol 7:1911–1919

    PubMed  PubMed Central  Google Scholar 

  15. Zhang LD, Ma L, Zhang L, Dai JG, Chang LG, Huang PL, Tian XQ (2015) Hyperbaric oxygen and ginkgo biloba extract ameliorate cognitive and memory impairment via nuclear factor kappa-B pathway in rat model of Alzheimer’s disease. Chin Med J 128:3088–3093

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lopes LS, Slobodian I, Del Bigio MR (2009) Characterization of juvenile and young adult mice following induction of hydrocephalus with kaolin. Exp Neurol 219:187–196

    Article  CAS  Google Scholar 

  17. Garcia CAB, Catalão CHR, Machado HR, Júnior IM, Romeiro TH, Peixoto-Santos JE, Santos MV, da Silva Lopes L (2017) Edaravone reduces astrogliosis and apoptosis in young rats with kaolin-induced hydrocephalus. Childs Nerv Syst 33:419–428

    Article  PubMed  Google Scholar 

  18. McAllister JP, Williams MA, Walker ML, Kestle JR, Relkin NR, Anderson AM, Gross PH, Browd SR, Panel HSE (2015) An update on research priorities in hydrocephalus: overview of the third National Institutes of Health-sponsored symposium “Opportunities for Hydrocephalus Research: Pathways to Better Outcomes”. J Neurosurg 123:1427–1438

    Article  PubMed  CAS  Google Scholar 

  19. Dombrowski SM, Schenk S, Leichliter A, Leibson Z, Fukamachi K, Luciano MG (2006) Chronic hydrocephalus-induced changes in cerebral blood flow: mediation through cardiac effects. J Cereb Blood Flow Metab 26:1298–1310

    Article  PubMed  Google Scholar 

  20. Dombrowski SM, Deshpande A, Dingwall C, Leichliter A, Leibson Z, Luciano MG (2008) Chronic hydrocephalus-induced hypoxia: increased expression of VEGFR-2+ and blood vessel density in hippocampus. Neuroscience 152:346–359

    Article  PubMed  CAS  Google Scholar 

  21. Owler BK, Pena A, Momjian S, Czosnyka Z, Czosnyka M, Harris NG, Smielewski P, Fryer T, Donvan T, Carpenter A, Pickard JD (2004) Changes in cerebral blood flow during cerebrospinal fluid pressure manipulation in patients with normal pressure hydrocephalus: a methodological study. J Cereb Blood Flow Metab 24:579–587

    Article  PubMed  Google Scholar 

  22. Chen LF, Tian YF, Lin CH, Huang LY, Niu KC, Lin MT (2014) Repetitive hyperbaric oxygen therapy provides better effects on brain inflammation and oxidative damage in rats with focal cerebral ischemia. J Formos Med Assoc 113:620–628

    Article  PubMed  CAS  Google Scholar 

  23. Duan S, Shao G, Yu L, Ren C (2015) Angiogenesis contributes to the neuroprotection induced by hyperbaric oxygen preconditioning against focal cerebral ischemia in rats. Int J Neurosci 125:625–634

    Article  PubMed  CAS  Google Scholar 

  24. Marx RE, Ehler WJ, Tayapongsak P, Pierce LW (1990) Relationship of oxygen dose to angiogenesis induction in irradiated tissue. Am J Surg 160:519–524

    Article  PubMed  CAS  Google Scholar 

  25. Yin X, Meng F, Wang Y, Wei W, Li A, Chai Y, Feng Z (2013) Effect of hyperbaric oxygen on neurological recovery of neonatal rats following hypoxic-ischemic brain damage and its underlying mechanism. Int J Clin Exp Pathol 6:66–75

    PubMed  CAS  Google Scholar 

  26. Liu XH, Yan H, Xu M, Zhao YL, Li LM, Zhou XH, Wang MX, Ma L (2013) Hyperbaric oxygenation reduces long-term brain injury and ameliorates behavioral function by suppression of apoptosis in a rat model of neonatal hypoxia-ischemia. Neurochem Int 62:922–930

    Article  PubMed  CAS  Google Scholar 

  27. Zhai WW, Sun L, Yu ZQ, Chen G (2016) Hyperbaric oxygen therapy in experimental and clinical stroke. Med Gas Res 6:111–118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Xue F, Huang JW, Ding PY, Zang HG, Kou ZJ, Li T, Fan J, Peng ZW, Yan WJ (2016) Nrf2/antioxidant defense pathway is involved in the neuroprotective effects of Sirt1 against focal cerebral ischemia in rats after hyperbaric oxygen preconditioning. Behav Brain Res 309:1–8

    Article  PubMed  CAS  Google Scholar 

  29. Zhang X, Wang X, Sun X, Zhang Y, Zhang H (2016) Differences in cognitive function of rats with traumatic brain injuries following hyperbaric oxygen therapy. Med Sci Monit 22:2608–2615

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Baratz-Goldstein R, Toussia-Cohen S, Elpaz A, Rubovitch V, Pick CG (2017) Immediate and delayed hyperbaric oxygen therapy as a neuroprotective treatment for traumatic brain injury in mice. Mol Cell Neurosci 83:74–82

    Article  PubMed  CAS  Google Scholar 

  31. Lim SW, Sung KC, Shiue YL, Wang CC, Chio CC, Kuo JR (2017) Hyperbaric oxygen effects on depression-like behavior and neuroinflammation in traumatic brain injury rats. World Neurosurg 100:128–137

    Article  PubMed  Google Scholar 

  32. Sun Y, Liu D, Wang Q, Su P, Tang Q (2017) Hyperbaric oxygen treatment of spinal cord injury in rat model. BMC Neurol 17:128

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hadanny A, Golan H, Fishlev G, Bechor Y, Volkov O, Suzin G, Ben-Jacob E, Efrati S (2015) Hyperbaric oxygen can induce neuroplasticity and improve cognitive functions of patients suffering from anoxic brain damage. Restor Neurol Neurosci 33:471–486

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Boussi-Gross R, Golan H, Fishlev G, Bechor Y, Volkov O, Bergan J, Friedman M, Hoofien D, Shlamkovitch N, Ben-Jacob E, Efrati S (2013) Hyperbaric oxygen therapy can improve post concussion syndrome years after mild traumatic brain injury—randomized prospective trial. PLoS One 8:e79995

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Huang L, Obenaus A (2011) Hyperbaric oxygen therapy for traumatic brain injury. Med Gas Res 1:21

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chen C, Huang L, Nong Z, Li Y, Chen W, Huang J, Pan X, Wu G (2017) Hyperbaric oxygen prevents cognitive impairments in mice induced by d-galactose by improving cholinergic and anti-apoptotic functions. Neurochem Res 42:1240–1253

    Article  PubMed  CAS  Google Scholar 

  37. Chovanes GI, McAllister JP, Lamperti AA, Salotto AG, Truex RC (1988) Monoamine alterations during experimental hydrocephalus in neonatal rats. Neurosurgery 22:86–91

    Article  PubMed  CAS  Google Scholar 

  38. Hwang YS, Shim I, Chang JW (2009) The behavioral change of locomotor activity in a kaolin-induced hydrocephalus rat model: evaluation of the effect on the dopaminergic system with progressive ventricle dilatation. Neurosci Lett 462:198–202

    Article  PubMed  CAS  Google Scholar 

  39. Chen LJ, Wang YJ, Chen JR, Tseng GF (2017) Hydrocephalus compacted cortex and hippocampus and altered their output neurons in association with spatial learning and memory deficits in rats. Brain Pathol 27:419–436

    Article  PubMed  CAS  Google Scholar 

  40. Khan OH, Enno TL, Del Bigio MR (2006) Brain damage in neonatal rats following kaolin induction of hydrocephalus. Exp Neurol 200:311–320

    Article  PubMed  CAS  Google Scholar 

  41. Olopade FE, Shokunbi MT (2017) Neurobehavioral deficits in progressive experimental hydrocephalus in neonatal rats. Niger J Physiol Sci 31:105–113

    PubMed  CAS  Google Scholar 

  42. Liu S, Liu Y, Deng S, Guo A, Wang X, Shen G (2015) Beneficial effects of hyperbaric oxygen on edema in rat hippocampus following traumatic brain injury. Exp Brain Res 233:3359–3365

    Article  PubMed  CAS  Google Scholar 

  43. Haapaniemi T, Nylander G, Kanje M, Dahlin L (1998) Hyperbaric oxygen treatment enhances regeneration of the rat sciatic nerve. Exp Neurol 149:433–438

    Article  PubMed  CAS  Google Scholar 

  44. Harch PG, Kriedt C, Van Meter KW, Sutherland RJ (2007) Hyperbaric oxygen therapy improves spatial learning and memory in a rat model of chronic traumatic brain injury. Brain Res 1174:120–129

    Article  PubMed  CAS  Google Scholar 

  45. Eng LF, Ghirnikar RS (1994) GFAP and astrogliosis. Brain Pathol 4:229–237

    Article  PubMed  CAS  Google Scholar 

  46. Del Bigio MR, Khan OH, da Silva Lopes L, Juliet PA (2012) Cerebral white matter oxidation and nitrosylation in young rodents with kaolin-induced hydrocephalus. J Neuropathol Exp Neurol 71:274–288

    Article  PubMed  CAS  Google Scholar 

  47. Lee HH, Park SC, Choe IS, Kim Y, Ha YS (2015) Time course and characteristics of astrocyte activation in the rat brain after injury. Korean J Neurotrauma 11:44–51

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lavrnja I, Parabucki A, Brkic P, Jovanovic T, Dacic S, Savic D, Pantic I, Stojiljkovic M, Pekovic S (2015) Repetitive hyperbaric oxygenation attenuates reactive astrogliosis and suppresses expression of inflammatory mediators in the rat model of brain injury. Mediat Inflamm 2015:498405

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Sandra L. Balero Penharvel Martins for the help with the preparation of histological samples and slides and Antonio Renato Meirelles e Silva for his assistance with microscope photographs.

Funding

Financial support from Fundação de Apoio ao Ensino, Pesquisa e Assistência do HCFMRP-USP (FAEPA - 1060/2015), and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP - grant number 2013/04130-6 and 2016/11212-7). A scholarship was granted to Stephanya Covas da Silva by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, 41407405829) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanya Covas da Silva.

Ethics declarations

This study was designed according to the ethical guidelines published by the Brazilian College of Animal Experimentation (COBEA), protocol number 47/2015, and was approved by the Ethics Committee of Animal Experimentation of Ribeirão Preto Medical School, University of Sao Paulo (CETEA/FMRP-USP). All efforts have been made to minimize suffering and the number of used animals.

Conflict of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the reported research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, S.C., Feres, O., da Silva Beggiora, P. et al. Hyperbaric oxygen therapy reduces astrogliosis and helps to recovery brain damage in hydrocephalic young rats. Childs Nerv Syst 34, 1125–1134 (2018). https://doi.org/10.1007/s00381-018-3803-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-018-3803-0

Keywords

Navigation