Skip to main content

Advertisement

Log in

Medulloblastoma-derived tumor stem-like cells acquired resistance to TRAIL-induced apoptosis and radiosensitivity

  • Original Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Objects

Medulloblastoma (MB) is the most malignant primary brain tumor in early childhood that contains cellular and functional heterogeneity. Recent evidence has demonstrated that the tumor stem cells (TSC) may explain the radiochemoresistance of brain tumors, including MB. The aim of the present study is to investigate the possible role of TNF-related apoptosis-inducing ligand (TRAIL) in viability and tumorigenicity of MB cells and MB-derived TSC.

Methods

MB-associated TSC were isolated and cultured by serum-free medium with bFGF and EGF. The parental MB cells and MB-TSC cells were treated with TRAIL in different concentrations and assessed for cell viability, invasion ability, colony forming ability, and radiotherapy effect.

Results

We enrich a subpopulation of MB-TSC cells using tumor spheroid formation approach. MB-TSC display enhanced self-renewal and highly expressed “stemness” genes (CD133, Sox-2, Bmi1, Nestin). Additionally, MB-TSC showed significant resistance to TRAIL-induced apoptosis and radiosensitivity compared to the parental MB cells due antiapoptotic gene (c-FLIP, Caspase 8, Bcl-2, and Bax) upregulation.

Conclusions

Our data suggest that MB-TSC are resistant to TRAIL-induced apoptosis and tumorigenic properties. Understanding the molecular mechanisms by which to operate the physiological characteristics in MB-TSC cells offers attractive approach for MB treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ashkenazi A (2008) Directing cancer cells to self-destruct with pro-apoptotic receptor agonists. Nat Rev Drug Discov 7:1001–1012

    Article  CAS  PubMed  Google Scholar 

  2. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760

    Article  CAS  PubMed  Google Scholar 

  3. Baumann M, Krause M, Hill R (2008) Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer 8:545–554

    Article  CAS  PubMed  Google Scholar 

  4. Beier D, Wischhusen J, Dietmaier W, Hau P, Proescholdt M, Brawanski A, Bogdahn U, Beier CP (2008) CD133 expression and cancer stem cells predict prognosis in high-grade oligodendroglial tumors. Brain Pathol 18:370–377

    Article  PubMed  Google Scholar 

  5. Cervoni L, Cantore G (1995) Medulloblastoma in pediatric age: a single-institution review of prognostic factors. Childs Nerv Syst 11:80–84, discussion 85

    Article  CAS  PubMed  Google Scholar 

  6. Chiou SH, Kao CL, Chen YW, Chien CS, Hung SC, Lo JF, Chen YJ, Ku HH, Hsu MT, Wong TT (2008) Identification of CD133-positive radioresistant cells in atypical teratoid/rhabdoid tumor. PLoS One 3:e2090

    Article  PubMed  CAS  Google Scholar 

  7. Chiou SH, Ku HH, Tsai TH, Lin HL, Chen LH, Chien CS, Ho LL, Lee CH, Chang YL (2006) Moclobemide upregulated Bcl-2 expression and induced neural stem cell differentiation into serotoninergic neuron via extracellular-regulated kinase pathway. Br J Pharmacol 148:587–598

    Article  CAS  PubMed  Google Scholar 

  8. Chiou SH, Yu CC, Huang CY, Lin SC, Liu CJ, Tsai TH, Chou SH, Chien CS, Ku HH, Lo JF (2008) Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma. Clin Cancer Res 14:4085–4095

    Article  CAS  PubMed  Google Scholar 

  9. Dalerba P, Cho RW, Clarke MF (2007) Cancer stem cells: models and concepts. Annu Rev Med 58:267–284

    Article  CAS  PubMed  Google Scholar 

  10. Dalerba P, Clarke MF (2007) Cancer stem cells and tumor metastasis: first steps into uncharted territory. Cell Stem Cell 1:241–242

    Article  CAS  PubMed  Google Scholar 

  11. Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5:275–284

    Article  CAS  PubMed  Google Scholar 

  12. Griffith TS, Stokes B, Kucaba TA, Earel JK Jr, VanOosten RL, Brincks EL, Norian LA (2009) TRAIL gene therapy: from preclinical development to clinical application. Curr Gene Ther 9:9–19

    Article  CAS  PubMed  Google Scholar 

  13. Gupta PB, Chaffer CL, Weinberg RA (2009) Cancer stem cells: mirage or reality? Nat Med 15:1010–1012

    Article  CAS  PubMed  Google Scholar 

  14. Habrand JL, De Crevoisier R (2001) Radiation therapy in the management of childhood brain tumors. Childs Nerv Syst 17:121–133

    Article  CAS  PubMed  Google Scholar 

  15. Hao C, Song JH, Hsi B, Lewis J, Song DK, Petruk KC, Tyrrell DL, Kneteman NM (2004) TRAIL inhibits tumor growth but is nontoxic to human hepatocytes in chimeric mice. Cancer Res 64:8502–8506

    Article  CAS  PubMed  Google Scholar 

  16. Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, Kornblum HI (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A 100:15178–15183

    Article  CAS  PubMed  Google Scholar 

  17. Hill RP, Perris R (2007) “Destemming” cancer stem cells. J Natl Cancer Inst 99:1435–1440

    Article  CAS  PubMed  Google Scholar 

  18. Ho MM, Ng AV, Lam S, Hung JY (2007) Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 67:4827–4833

    Article  CAS  PubMed  Google Scholar 

  19. Hoppe-Hirsch E, Brunet L, Laroussinie F, Cinalli G, Pierre-Kahn A, Renier D, Sainte-Rose C, Hirsch JF (1995) Intellectual outcome in children with malignant tumors of the posterior fossa: influence of the field of irradiation and quality of surgery. Childs Nerv Syst 11:340–345, discussion 345–346

    Article  CAS  PubMed  Google Scholar 

  20. Jordan CT, Guzman ML, Noble M (2006) Cancer stem cells. N Engl J Med 355:1253–1261

    Article  CAS  PubMed  Google Scholar 

  21. Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W, Park JK, Fine HA (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9:391–403

    Article  CAS  PubMed  Google Scholar 

  22. Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, Hilsenbeck SG, Pavlick A, Zhang X, Chamness GC, Wong H, Rosen J, Chang JC (2008) Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 100:672–679

    Article  CAS  PubMed  Google Scholar 

  23. Lu KH, Chen YW, Tsai PH, Tsai ML, Lee YY, Chiang CY, Kao CL, Chiou SH, Ku HH, Lin CH, Chen YJ (2009) Evaluation of radiotherapy effect in resveratrol-treated medulloblastoma cancer stem-like cells. Childs Nerv Syst 25:543–550

    Article  PubMed  Google Scholar 

  24. Neuzil J, Stantic M, Zobalova R, Chladova J, Wang X, Prochazka L, Dong L, Andera L, Ralph SJ (2007) Tumour-initiating cells vs. cancer ‘stem’ cells and CD133: what’s in the name? Biochem Biophys Res Commun 355:855–859

    Article  CAS  PubMed  Google Scholar 

  25. Pan G, O’Rourke K, Chinnaiyan AM, Gentz R, Ebner R, Ni J, Dixit VM (1997) The receptor for the cytotoxic ligand TRAIL. Science 276:111–113

    Article  CAS  PubMed  Google Scholar 

  26. Park CY, Tseng D, Weissman IL (2009) Cancer stem cell-directed therapies: recent data from the laboratory and clinic. Mol Ther 17:219–230

    Article  CAS  PubMed  Google Scholar 

  27. Phillips TM, McBride WH, Pajonk F (2006) The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 98:1777–1785

    Article  PubMed  Google Scholar 

  28. Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A (1996) Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 271:12687–12690

    Article  CAS  PubMed  Google Scholar 

  29. Polyak K, Weinberg RA (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9:265–273

    Article  CAS  PubMed  Google Scholar 

  30. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445:111–115

    Article  CAS  PubMed  Google Scholar 

  31. Rosen JM, Jordan CT (2009) The increasing complexity of the cancer stem cell paradigm. Science 324:1670–1673

    Article  CAS  PubMed  Google Scholar 

  32. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    CAS  PubMed  Google Scholar 

  33. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  CAS  PubMed  Google Scholar 

  34. Todaro M, Alea MP, Di Stefano AB, Cammareri P, Vermeulen L, Iovino F, Tripodo C, Russo A, Gulotta G, Medema JP, Stassi G (2007) Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 1:389–402

    Article  CAS  PubMed  Google Scholar 

  35. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8:755–768

    Article  CAS  PubMed  Google Scholar 

  36. Whelan HT, Krouwer HG, Schmidt MH, Reichert KW, Kovnar EH (1998) Current therapy and new perspectives in the treatment of medulloblastoma. Pediatr Neurol 18:103–115

    Article  CAS  PubMed  Google Scholar 

  37. Zeppernick F, Ahmadi R, Campos B, Dictus C, Helmke BM, Becker N, Lichter P, Unterberg A, Radlwimmer B, Herold-Mende CC (2008) Stem cell marker CD133 affects clinical outcome in glioma patients. Clin Cancer Res 14:123–129

    Article  CAS  PubMed  Google Scholar 

  38. Zobalova R, Stantic M, Prokopova K, Dong LF, Neuzil J (2009) Cancer cells with high expression of CD133 exert FLIP upregulation and resistance to TRAIL-induced apoptosis. Biofactors 34:231–235

    PubMed  Google Scholar 

Download references

Acknowledgement

This study was supported by research grants from the National Science Council (NSC-97-3111-B-075-001-MY3, 97-2314-B-075-056-MY3), Taipei Veterans General Hospital (V97E1-008, V97F-001), Yen-Tjing-Ling Medical Foundation, Taipei City Hospital (96001-62-014, 96001-62-018, 96002-62-092), and National Yang-Ming University (Ministry of Education, Aim for the Top University Plan), Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shih-Hwa Chiou or Tai-Tong Wong.

Additional information

Yu, Chiou, and Lee contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, CC., Chiou, GY., Lee, YY. et al. Medulloblastoma-derived tumor stem-like cells acquired resistance to TRAIL-induced apoptosis and radiosensitivity. Childs Nerv Syst 26, 897–904 (2010). https://doi.org/10.1007/s00381-010-1087-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-010-1087-0

Keywords

Navigation