Skip to main content

Advertisement

Log in

Serum adipocyte fatty acid-binding protein is independently associated with complex coronary lesions in patients with stable coronary artery disease

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

The association between circulating adipocyte fatty acid-binding protein (A-FABP) levels and coronary artery disease (CAD) is reported. We assessed whether plasma A-FABP levels are associated with angiographic coronary lesion morphology in patients with stable CAD. Serum A-FABP levels were analyzed in 115 patients with stable CAD (mean age 69 ± 10 years; 80 % men). These patients were angiographically studied and divided into two groups: simple lesions (n = 34) and complex lesions (n = 81). We also compared 50 age- and gender-matched controls with no evidence of CAD. Serum A-FABP levels in patients with stable CAD were significantly higher than those in controls. In patients with stable CAD, serum A-FABP levels were significantly higher in patients with complex lesions than in those with simple lesions: median (25th–75th percentile), 23.4 (17.7–30.8) vs 18.2 (12.2–24.7) ng/ml, P < 0.01. Serum A-FABP levels were also significantly associated with angiographic scores of extent of coronary lesion (r = 0.21, P = 0.02). Multiple logistic analysis that included dyslipidemia, statin therapy, and extent score demonstrated that serum A-FABP was independently associated with complex lesions. The multiple adjusted odds ratio for a complex lesion with a serum A-FABP level (per doubling) was 2.38 (95 % confidence interval, 1.03–6.41; P = 0.03). High serum A-FABP levels were significantly associated with complex coronary lesions in patients with stable CAD, suggesting that high A-FABP levels may be involved in coronary plaque vulnerability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Matsuzawa Y, Nakamura T, Shimomura I, Kotani K (1995) Visceral fat accumulation and cardiovascular disease. Obes Res 3(Suppl 5):645S–647S

    PubMed  Google Scholar 

  2. Oda E, Goto M, Matsushita H, Takarada K, Tomita M, Saito A, Fuse K, Fujita S, Ikeda Y, Kitazawa H, Takahashi M, Sato M, Okabe M, Aizawa Y (2012) The association between obesity and acute myocardial infarction is age- and gender-dependent in a Japanese population. Heart Vessels. doi:10.1007/s00380-012-0280-3

    Google Scholar 

  3. Kershaw EE, Flier JS (2004) Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89:2548–2556

    Article  PubMed  CAS  Google Scholar 

  4. Grundy SM (2006) Metabolic syndrome: connecting and reconciling cardiovascular and diabetes worlds. J Am Coll Cardiol 47:1093–1100

    Article  PubMed  CAS  Google Scholar 

  5. Saito T, Mochizuki T, Uchida K, Tsuchiya K, Nitta K (2012) Metabolic syndrome and risk of progression of chronic kidney disease: a single-center cohort study in Japan. Heart Vessels. doi:10.1007/s00380-012-0254-5

    Google Scholar 

  6. Hotamisligil GS, Johnson RS, Distel RJ, Ellis R, Papaioannou VE, Spiegelman BM (1996) Uncoupling of obesity from insulin resistance through a targeted mutation in aP2, the adipocyte fatty acid binding protein. Science 274:1377–1379

    Article  PubMed  CAS  Google Scholar 

  7. Boord JB, Fazio S, Linton MF (2002) Cytoplasmic fatty acid-binding proteins: emerging roles in metabolism and atherosclerosis. Curr Opin Lipidol 13:141–147

    Article  PubMed  CAS  Google Scholar 

  8. Gold C (1967) A primary mesothelioma involving the rectovaginal septum and associated with beryllium. J Pathol Bacteriol 93:435–442

    Article  PubMed  CAS  Google Scholar 

  9. Boord JB, Maeda K, Makowski L, Babaev VR, Fazio S, Linton MF, Hotamisligil GS (2002) Adipocyte fatty acid-binding protein, aP2, alters late atherosclerotic lesion formation in severe hypercholesterolemia. Arterioscler Thromb Vasc Biol 22:1686–1691

    Article  PubMed  CAS  Google Scholar 

  10. Makowski L, Boord JB, Maeda K, Babaev VR, Uysal KT, Morgan MA, Parker RA, Suttles J, Fazio S, Hotamisligil GS, Linton MF (2001) Lack of macrophage fatty-acid-binding protein aP2 protects mice deficient in apolipoprotein E against atherosclerosis. Nat Med 7:699–705

    Article  PubMed  CAS  Google Scholar 

  11. Xu A, Wang Y, Xu JY, Stejskal D, Tam S, Zhang J, Wat NM, Wong WK, Lam KS (2006) Adipocyte fatty acid-binding protein is a plasma biomarker closely associated with obesity and metabolic syndrome. Clin Chem 52:405–413

    Article  PubMed  CAS  Google Scholar 

  12. Bao Y, Lu Z, Zhou M, Li H, Wang Y, Gao M, Wei M, Jia W (2011) Serum levels of adipocyte fatty acid-binding protein are associated with the severity of coronary artery disease in Chinese women. PLoS ONE 6:e19115

    Article  PubMed  CAS  Google Scholar 

  13. Doi M, Miyoshi T, Hirohata S, Nakamura K, Usui S, Takeda K, Iwamoto M, Kusachi S, Kusano K, Ito H (2011) Association of increased plasma adipocyte fatty acid-binding protein with coronary artery disease in non-elderly men. Cardiovasc Diabetol 10:44

    Article  PubMed  CAS  Google Scholar 

  14. Rhee EJ, Lee WY, Park CY, Oh KW, Kim BJ, Sung KC, Kim BS (2009) The association of serum adipocyte fatty acid-binding protein with coronary artery disease in Korean adults. Eur J Endocrinol 160:165–172

    Article  PubMed  CAS  Google Scholar 

  15. Yeung DC, Xu A, Cheung CW, Wat NM, Yau MH, Fong CH, Chau MT, Lam KS (2007) Serum adipocyte fatty acid-binding protein levels were independently associated with carotid atherosclerosis. Arterioscler Thromb Vasc Biol 27:1796–1802

    Article  PubMed  CAS  Google Scholar 

  16. Miyoshi T, Onoue G, Hirohata A, Hirohata S, Usui S, Hina K, Kawamura H, Doi M, Kusano KF, Kusachi S, Ninomiya Y (2010) Serum adipocyte fatty acid-binding protein is independently associated with coronary atherosclerotic burden measured by intravascular ultrasound. Atherosclerosis 211:164–169

    Google Scholar 

  17. Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, Badimon JJ, Stefanadis C, Moreno P, Pasterkamp G, Fayad Z, Stone PH, Waxman S, Raggi P, Madjid M, Zarrabi A, Burke A, Yuan C, Fitzgerald PJ, Siscovick DS, de Korte CL, Aikawa M, Juhani Airaksinen KE, Assmann G, Becker CR, Chesebro JH, Farb A, Galis ZS, Jackson C, Jang IK, Koenig W, Lodder RA, March K, Demirovic J, Navab M, Priori SG, Rekhter MD, Bahr R, Grundy SM, Mehran R, Colombo A, Boerwinkle E, Ballantyne C, Insull W Jr, Schwartz RS, Vogel R, Serruys PW, Hansson GK, Faxon DP, Kaul S, Drexler H, Greenland P, Muller JE, Virmani R, Ridker PM, Zipes DP, Shah PK, Willerson JT (2003) From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part I. Circulation 108:1664–1672

    Article  PubMed  Google Scholar 

  18. Falk E, Shah PK, Fuster V (1995) Coronary plaque disruption. Circulation 92:657–671

    Article  PubMed  CAS  Google Scholar 

  19. Levin DC, Fallon JT (1982) Significance of the angiographic morphology of localized coronary stenoses: histopathologic correlations. Circulation 66:316–320

    Article  PubMed  CAS  Google Scholar 

  20. Kaski JC, Chester MR, Chen L, Katritsis D (1995) Rapid angiographic progression of coronary artery disease in patients with angina pectoris. The role of complex stenosis morphology. Circulation 92:2058–2065

    Article  PubMed  CAS  Google Scholar 

  21. Chester MR, Chen L, Tousoulis D, Poloniecki J, Kaski JC (1995) Differential progression of complex and smooth stenoses within the same coronary tree in men with stable coronary artery disease. J Am Coll Cardiol 25:837–842

    Article  PubMed  CAS  Google Scholar 

  22. Chester MR, Chen L, Kaski JC (1996) The natural history of unheralded complex coronary plaques. J Am Coll Cardiol 28:604–608

    PubMed  CAS  Google Scholar 

  23. Sullivan DR, Marwick TH, Freedman SB (1990) A new method of scoring coronary angiograms to reflect extent of coronary atherosclerosis and improve correlation with major risk factors. Am Heart J 119:1262–1267

    Article  PubMed  CAS  Google Scholar 

  24. Ambrose JA, Winters SL, Arora RR, Eng A, Riccio A, Gorlin R, Fuster V (1986) Angiographic evolution of coronary artery morphology in unstable angina. J Am Coll Cardiol 7:472–478

    Article  PubMed  CAS  Google Scholar 

  25. Ambrose JA, Winters SL, Stern A, Eng A, Teichholz LE, Gorlin R, Fuster V (1985) Angiographic morphology and the pathogenesis of unstable angina pectoris. J Am Coll Cardiol 5:609–616

    Article  PubMed  CAS  Google Scholar 

  26. Standards of medical care in diabetes–2008 (2008) Diabetes Care 31 Suppl 1:S12–S54

    Google Scholar 

  27. Iwamoto M, Miyoshi T, Doi M, Takeda K, Kajiya M, Nosaka K, Nakamaya R, Hirohata S, Usui S, Kusachi S, Sakane K, Nakamura K, Ito H (2012) Elevated serum adipocyte fatty acid-binding protein concentrations are independently associated with renal dysfunction in patients with stable angina pectoris. Cardiovasc Diabetol 11:26

    Article  PubMed  CAS  Google Scholar 

  28. Miyoshi T, Doi M, Hirohata S, Kamikawa S, Usui S, Ogawa H, Sakane K, Izumi R, Ninomiya Y, Kusachi S (2011) Olmesartan reduces arterial stiffness and serum adipocyte fatty acid-binding protein in hypertensive patients. Heart Vessels 26:408-413

    Google Scholar 

  29. Miyoshi T, Onoue G, Hirohata A, Hirohata S, Usui S, Hina K, Kawamura H, Doi M, Kusano KF, Kusachi S, Ninomiya Y (2010) Serum adipocyte fatty acid-binding protein is independently associated with coronary atherosclerotic burden measured by intravascular ultrasound. Atherosclerosis 211:164–169

    Google Scholar 

  30. Dubey L, Zeng H, Hashmi S, Hongjie W, Tao H (2008) Association of plasma leptin levels and complexity of the culprit lesion in patients with unstable angina. Int J Cardiol 126:183–189

    Article  PubMed  Google Scholar 

  31. Otsuka F, Sugiyama S, Kojima S, Maruyoshi H, Funahashi T, Matsui K, Sakamoto T, Yoshimura M, Kimura K, Umemura S, Ogawa H (2006) Plasma adiponectin levels are associated with coronary lesion complexity in men with coronary artery disease. J Am Coll Cardiol 48:1155–1162

    Article  PubMed  CAS  Google Scholar 

  32. Peeters W, de Kleijn DP, Vink A, van de Weg S, Schoneveld AH, Sze SK, van der Spek PJ, de Vries JP, Moll FL, Pasterkamp G (2011) Adipocyte fatty acid binding protein in atherosclerotic plaques is associated with local vulnerability and is predictive for the occurrence of adverse cardiovascular events. Eur Heart J 32:1758–1768

    Article  PubMed  CAS  Google Scholar 

  33. Makowski L, Brittingham KC, Reynolds JM, Suttles J, Hotamisligil GS (2005) The fatty acid-binding protein, aP2, coordinates macrophage cholesterol trafficking and inflammatory activity. Macrophage expression of aP2 impacts peroxisome proliferator-activated receptor gamma and IkappaB kinase activities. J Biol Chem 280:12888–12895

    Article  PubMed  CAS  Google Scholar 

  34. Joseph SB, Castrillo A, Laffitte BA, Mangelsdorf DJ, Tontonoz P (2003) Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med 9:213–219

    Article  PubMed  CAS  Google Scholar 

  35. Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK (1998) The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 391:79–82

    Article  PubMed  CAS  Google Scholar 

  36. Cabre A, Lazaro I, Girona J, Manzanares JM, Marimon F, Plana N, Heras M, Masana L (2007) Fatty acid binding protein 4 is increased in metabolic syndrome and with thiazolidinedione treatment in diabetic patients. Atherosclerosis 195:e150–e158

    Article  PubMed  CAS  Google Scholar 

  37. Xu A, Tso AW, Cheung BM, Wang Y, Wat NM, Fong CH, Yeung DC, Janus ED, Sham PC, Lam KS (2007) Circulating adipocyte-fatty acid binding protein levels predict the development of the metabolic syndrome: a 5-year prospective study. Circulation 115:1537–1543

    Article  PubMed  CAS  Google Scholar 

  38. Karpisek M, Stejskal D, Kotolova H, Kollar P, Janoutova G, Ochmanova R, Cizek L, Horakova D, Yahia RB, Lichnovska R, Janout V (2007) Treatment with atorvastatin reduces serum adipocyte-fatty acid binding protein value in patients with hyperlipidaemia. Eur J Clin Invest 37:637–642

    Article  PubMed  CAS  Google Scholar 

  39. Eynatten M, Breitling LP, Roos M, Baumann M, Rothenbacher D, Brenner H (2012) Circulating adipocyte fatty acid-binding protein levels and cardiovascular morbidity and mortality in patients with coronary heart disease: a 10-year prospective study. Arterioscler Thromb Vasc Biol 32:2327–2335

    Article  Google Scholar 

  40. Lamounier-Zepter V, Look C, Alvarez J, Christ T, Ravens U, Schunck WH, Ehrhart-Bornstein M, Bornstein SR, Morano I (2009) Adipocyte fatty acid-binding protein suppresses cardiomyocyte contraction: a new link between obesity and heart disease. Circ Res 105:326–334

    Article  PubMed  CAS  Google Scholar 

  41. Ellis S, Alderman EL, Cain K, Wright A, Bourassa M, Fisher L (1989) Morphology of left anterior descending coronary territory lesions as a predictor of anterior myocardial infarction: a CASS registry study. J Am Coll Cardiol 13:1481–1491

    Article  PubMed  CAS  Google Scholar 

  42. Kaski JC, Chen L, Chester M (1995) Rapid angiographic progression of “target” and “nontarget” stenoses in patients awaiting coronary angioplasty. J Am Coll Cardiol 26:416–421

    Article  PubMed  CAS  Google Scholar 

  43. Furuhashi M, Ishimura S, Ota H, Hayashi M, Nishitani T, Tanaka M, Yoshida H, Shimamoto K, Hotamisligil GS, Miura T (2011) Serum fatty acid-binding protein 4 is a predictor of cardiovascular events in end-stage renal disease. PLoS ONE 6:e27356

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toru Miyoshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kajiya, M., Miyoshi, T., Doi, M. et al. Serum adipocyte fatty acid-binding protein is independently associated with complex coronary lesions in patients with stable coronary artery disease. Heart Vessels 28, 696–703 (2013). https://doi.org/10.1007/s00380-012-0310-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-012-0310-1

Keywords

Navigation