Skip to main content
Log in

A Numerical Study of Mesoscale Vortex Formation in the Midlatitudes: The Role of Moist Processes

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

In this study, a three-dimensional mesoscale model was used to numerically simulate the well-known “98.7” heavy rainfall event that affected the Yangtze Valley in July 1998. Two experiments were conducted to analyze the impact of moist processes on the development of meso-β scale vortices (MβV) and their triggering by mesoscale wind perturbation (MWP). In the experiment in which the latent heat feedback (LHF) scheme was switched off, a stable low-level col field (i.e., saddle field—a region between two lows and two highs in the isobaric surface) formed, and the MWP triggered a weak MβV. However, when the LHF scheme was switched on as the MWP was introduced into the model, the MβV developed quickly and intense rainfall and a mesoscale low-level jet (mLLJ) were generated. The thickness of the air column and average temperature between 400 and 700 hPa decreased without the feedback of latent heat, whereas they increased quickly when the LHF scheme was switched on, with the air pressure falling at low levels but rising at upper levels. A schematic representation of the positive feedbacks among the mesoscale vortex, rainfall, and mLLJ shows that in the initial stage of theMβV, the MWP triggers light rainfall and the latent heat occurs at low levels, which leads to weak convergence and ageostrophic winds. In the mature stage of theMβV, convection extends to the middle-to-upper levels, resulting in an increase in the average temperature and a stretching of the air column. A low-level cyclonic circulation forms under the effect of Coriolis torque, and the mLLJ forms to the southeast of the MβV.

摘要

中纬度地区鞍型场常常产生中尺度涡旋, 造成暴雨甚至特大暴雨. 本文利用三维中尺度模式对“98.7”鄂东特大暴雨进行了数值模拟. 设计两个试验分析了湿物理过程对中尺度风场扰动激发β中尺度涡旋以及β中尺度涡旋发展的影响. 在关闭凝结潜热加热反馈方案试验中, 鄂东地区对流层低层形成一个稳定的鞍型场, 中尺度风场扰动在鞍型场中激发出一个弱的β中尺度涡旋. 在另一个试验中, 当加入中尺度风场扰动后, 打开凝结潜热加热反馈方案, β中尺度涡旋迅速发展, 产生强降水和中尺度低空急流. 400hPa和700hPa之间气柱的厚度和平均温度在没有凝结潜热加热反馈时随积分减小, 而在凝结潜热加热反馈作用下, 却迅速加大, 伴有低层气压下降, 高层气压升高. 概括了中尺度涡旋, 降水和中尺度低空急流之间正反馈作用的概念模型: β中尺度涡旋形成初始阶段, 中尺度风场扰动激发弱降水, 凝结潜热加热出现在低层, 产生弱辐合和非地转风. 在β中尺度涡旋成熟阶段, 对流发展到中高层, 导致气柱平均温度升高, 气柱变厚, 在科氏力作用下, 低层形成气旋性环流, 在β中尺度涡旋东南侧形成中尺度低空急流.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bei, N. F., S. X. Zhao, and S. T. Gao, 2002: Numerical simulation of a heavy rainfall event in China during July 1998. Meteor. Atmos. Phys., 80, 153–164, https://doi.org/10.1007/s007030200022.

    Article  Google Scholar 

  • Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 677–691, https://doi.org/10.1002/qj.49711247307.

    Google Scholar 

  • Chen, Q. S., 1982: The instability of the gravity-inertia wave and its relation to low-level jet and heavy rain. J. Meteor. Soc. Japan, 60, 1041–1057, https://doi.org/10.2151/jmsj1965.60.51041.

    Article  Google Scholar 

  • Chen, G. T. J., C. C. Wang, and L. F. Lin, 2006: A diagnostic study of a retreating Mei-yu front and the accompanying low-level jet formation and intensification. Mon. Wea. Rev., 134, 874–896, https://doi.org/10.1175/MWR3099.1.

    Article  Google Scholar 

  • Chen, S. J., Y. H. Kuo, W. Wang, Z. Y. Tao, and B. Cui, 1998: A modeling case study of heavy rainstorms along the Meiyu front. Mon. Wea. Rev., 126, 2330–2351, https://doi.org/10.1175/1520-0493(1998)126<2330:AMCSOH>2.0.CO;2.

    Article  Google Scholar 

  • Cho, H. R., 1993: A mechanism causing mesoscale organizations of precipitation in midlatitude cyclones. J. Appl. Meteor., 32, 155–160, 10.1175/1520-0450(1993)032 <0155:AMCMOO>2.0.CO;2.

    Article  Google Scholar 

  • Davis, C. A., 1992: A potential-vorticity diagnosis of the importance of initial structure and condensational heating in observed extratropical cyclogenesis. Mon. Wea. Rev., 120, 2409–2428, https://doi.org/10.1175/1520-0493(1992)120<2409:APVDOT>2.0.CO;2.

    Article  Google Scholar 

  • Davis, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis. Mon. Wea. Rev., 119, 1929–1953, https://doi.org/10.1175/1520-0493(1991)119<1929:PVDOC>2.0.CO;2.

    Article  Google Scholar 

  • Ding, Y. H., 1992: Summer monsoon rainfalls in China. J. Meteor. Soc. Japan, 70, 373–396, https://doi.org/10.2151/jmsj1965.70.1B373.

    Article  Google Scholar 

  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877–946, https://doi.org/10.1002/qj.49711147002.

    Article  Google Scholar 

  • Hsu, W. R., and W. Y. Sun, 1994: A numerical study of a lowlevel jet and its accompanying secondary circulation in a Mei- Yu system. Mon. Wea. Rev., 122, 324–340, https://doi.org/10.1175/1520-0493(1994)122<0324:ANSOAL>2.0.CO;2.

    Article  Google Scholar 

  • Jiang, Y. Q., and Y. Wang, 2012: Numerical simulation on the formation of mesoscale vortex in col field. Acta Meteorologica Sinica, 26(1), 112–128, https://doi.org/10.1007/s13351-012-0111-6.

    Article  Google Scholar 

  • Jiang, Y. Q., Y. Wang, and H. Huang, 2012: A study on the dynamic mechanism of the formation of mesoscale vortex in col field. Adv. Atmos. Sci., 29(6), 1215–1226, https://doi.org/10.1007/s00376-012-1186-9.

    Article  Google Scholar 

  • Kuo, Y.-H., and R. J. Reed, 1988: Numerical simulation of an explosively deepening cyclone in the eastern Pacific. Mon. Wea. Rev., 116, 2081–2105, https://doi.org/10.1175/1520-0493(1988)116<2081:NSOAED>2.0.CO;2.

    Article  Google Scholar 

  • Matsumoto, S., S. Yoshizumi, and M. Takeuchi, 1970: On the structure of the “Baiu Front” and the associated intermediatescale disturbances in the lower atmosphere. J. Meteor. Soc. Japan, 48, 479–491, https://doi.org/10.2151/jmsj1965.48.6479.

    Article  Google Scholar 

  • Ninomiya, K., and T. Akiyama, 1974: Band structure of mesoscale echo clusters associated with low-level jet stream. J. Meteor. Soc. Japan, 52, 300–313, https://doi.org/10.2151/jmsj1965.52.3300.

    Article  Google Scholar 

  • Ninomiya, K., 2000: Large- and meso-a-scale characteristics of Meiyu/Baiu front associated with intense rainfalls in 1–10 July 1991. J. Meteor. Soc. Japan, 78, 141–157, https://doi.org/10.2151/jmsj1965.78.2141.

    Article  Google Scholar 

  • Novak, D. R., B. A. Colle, and R. McTaggart-Cowan, 2009: The role of moist processes in the formation and evolution of mesoscale snowbands within the comma head of Northeast U. S. cyclones. Mon. Wea. Rev., 137, 2662–2686, https://doi.org/10.1175/2009MWR2874.1.

    Article  Google Scholar 

  • Posselt, D. J., and J. E. Martin, 2004: The effect of latent heat release on the evolution of a warm occluded thermal structure. Mon. Wea. Rev., 132, 578–599, https://doi.org/10.1175/1520-0493(2004)132<0578:TEOLHR>2.0.CO;2.

    Article  Google Scholar 

  • Stoelinga, M. T., 1996: A potential vorticity–based study of the role of diabatic heating and friction in a numerically simulated baroclinic cyclone. Mon. Wea. Rev., 124, 849–874, https://doi.org/10.1175/1520-0493(1996)124<0849:APVBSO>2.0.CO;2.

    Article  Google Scholar 

  • Tan, Z. M., F. Q. Zhang, R. Rotunno, and C. Snyder, 2004: Mesoscale predictability of moist baroclinic waves: Experiments with parameterized convection. J. Atmos. Sci., 61, 1794–1804, https://doi.org/10.1175/1520-0469(2004)061<1794:MPOMBW>2.0.CO;2.

    Article  Google Scholar 

  • Uccellini, L. W., R. A. Petersen, P. J. Kocin, K. F. Brill, and J. J. Tuccillo, 1987: Synergistic interactions between an upperlevel jet streak and diabatic processes that influence the development of a low-level jet and a secondary coastal cyclone. Mon. Wea. Rev., 115, 2227–2261, https://doi.org/10.1175/1520-0493(1987)115<2227:SIBAUL>2.0.CO;2.

    Article  Google Scholar 

  • Wang, Z., G. Q. Zhai, and K. Gao, 2003: Analysis and numerical simulation of a meso-ß-scale vortex in the middle reaches of the Yangtze River. Acta Meteorologica Sinica, 61, 66–77, https://doi.org/10.11676/qxxb2003.007. (in Chinese with English abstract)

    Google Scholar 

  • Xu, W. H., Y. Q. Ni, X. K. Wang, X. X. Qiu, X. H. Bao, and W. Y. Jin, 2011: A study of structure and mechanism of a mesobeta- scale convective vortex and associated heavy rainfall in the Dabie mountain area part I: Diagnostic analysis of the structure. Adv. Atmos. Sci., 28(5), 1159–1176, https://doi.org/10.1007/s00376-010-0170-5.

    Article  Google Scholar 

  • Yu, R. C., Q. C. Zeng, G. K. Peng, and F. X. Chai, 1994: Research on “Ya-An-Tian-Lou”. Part II: Numerical trialforecasting. Scientia Atmospherica Sinica, 18(5), 535–551, https://doi.org/10.3878/j.issn.1006-9895.1994.05.04. (in Chinese with English abstract)

    Google Scholar 

  • Zhang, D. L., and R. A. Anthes, 1982: A high-resolution model of the planetary boundary layer-sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor., 21, 1594–1609, https://doi.org/10.1175/1520-0450(1982)021<1594:AHRMOT>2.0.CO;2.

    Article  Google Scholar 

  • Zhang, F., C. Snyder, and R. Rotunno, 2003a: Effects of moist convection on mesoscale predictability. J. Atmos. Sci., 60, 1173–1185, https://doi.org/10.1175/1520-0469(2003)060<1173:EOMCOM>2.0.CO;2.

    Article  Google Scholar 

  • Zhang, Q. H., K. H. Lau, Y. H. Kuo, and S. J. Chen, 2003b: A numerical study of a mesoscale convective system over the Taiwan Strait. Mon. Wea. Rev., 131, 1150–1170, https://doi.org/10.1175/1520-0493(2003)131<1150:ANSOAM>2.0.CO;2.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Grand Fundamental Research 973 Program of China (Grant No. 2015CB452800), the National Natural Science Foundation of China (Grant Nos. 41275099, 41205073 and 41275012), and the Natural Science Foundation of the Nanjing Joint Center of Atmospheric Research (Grant No. NJCAR2016MS02). The authors are grateful for the GAME reanalysis data provided by the Japan Meteorological Agency and the Earth Observation Research Center/ National Space of Development Agency of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Wang, Y., Chen, C. et al. A Numerical Study of Mesoscale Vortex Formation in the Midlatitudes: The Role of Moist Processes. Adv. Atmos. Sci. 36, 65–78 (2019). https://doi.org/10.1007/s00376-018-7234-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-018-7234-3

Key words

关键词

Navigation