Skip to main content
Log in

Geometric Characteristics of Tropical Cyclone Eyes before Landfall in South China based on Ground-Based Radar Observations

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The geometric characteristics of tropical cyclone (TC) eyes before landfall in South China are examined using ground-based radar reflectivity. It is found that the median and mean eye area decrease with TC intensity, except for the severe typhoon category, and the eye size increases with height. The increasing rate of eye size is relatively greater in upper layers. Moreover, the ratio of eye size change in the vertical direction does not correlate with TC intensity. No relationship is presented between the ratio of eye size change in the vertical direction and the vertical wind shear. No relationship between the vertical change in eye size and the eye size at a certain level is found, inconsistent with other studies. No relationship exists between the vertical change in eye size and the intensity tendency. The eye roundness values range mainly from 0.5 to 0.7, and more intense TCs generally have eyes that are more circular.

摘要

本研究利用地基雷达反射率研究登陆华南的热带气旋在登陆前眼的几何特征. 研究发现尽管眼的面积有随热带气旋的增强而减小的趋势, 但这种关系在台风和强台风强度之间不成立. 眼的面积随高度增加, 且在对流层高层增大较快. 眼的面积在垂直方向上的变化与强度、强度变化、垂直风切变及眼本身大小没有统计关系. 眼的圆度值大多集中于0.5-0.7之间, 通常热带气旋越强则眼越圆.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aberson, S. D., J. P. Dunion, and F. D. Marks Jr., 2006: A Photograph of aWavenumber-2 Asymmetry in the Eye of Hurricane Erin. J. Atmos. Sci., 63, 387–391, https://doi.org/10.1175/JAS3593.1.

    Article  Google Scholar 

  • Barnes, C. E., and G. M. Barnes., 2014: Eye and eyewall traits as determined with the NOAA wp-3d lower-fuselage radar. Mon. Wea. Rev., 142, 3393–3417, https://doi.org/10.1175/MWRD-13-00375.1.

    Article  Google Scholar 

  • Barnes, G. M., and P. Fuentes, 2010: Eye excess energy and the rapid intensification of Hurricane Lili (2002). Mon. Wea. Rev., 138, 1446–1458, https://doi.org/10.1175/2009MWR3145.1.

    Article  Google Scholar 

  • Braun, S. A., 2002: A cloud-resolving simulation of Hurricane Bob (1991): Storm structure and eyewall buoyancy. Mon. Wea. Rev., 130, 1573–1592, https://doi.org/10.1175/1520-0493(2002)130<1573:ACRSOH>2.0.CO;2.

    Article  Google Scholar 

  • Bryan, G. H., and R. Rotunno, 2009: The maximum intensity of tropical cyclones in axisymmetric numerical model simulations. Mon. Wea. Rev., 137, 1770–1789, https://doi.org/10.1175/2008MWR2709.1.

    Article  Google Scholar 

  • Chen, X. M., Y. Q. Wang, and K. Zhao, 2015: Synoptic flow patterns and large-scale characteristics associated with rapidly intensifying tropical cyclones in the South China Sea. Mon. Wea. Rev., 143, 64–87, https://doi.org/10.1175/MWR-D-13-00338.1.

    Article  Google Scholar 

  • Corbosiero, K. L., J. Molinari, and M. L. Black, 2005: The structure and evolution of Hurricane Elena (1985). Part I: Symmetric intensification. Mon. Wea. Rev., 133, 2905–2921, https://doi.org/10.1175/MWR3010.1.

    Google Scholar 

  • Cram, T. A., J. Persing, M. T. Montgomery, and S. A. Braun, 2007: A Lagrangian trajectory view on transport and mixing processes between the eye, eyewall, and environment using a high-resolution simulation of Hurricane Bonnie (1998). J. Atmos. Sci., 64, 1835–1856, https://doi.org/10.1175/JAS3921.1.

    Article  Google Scholar 

  • Dolling, K. P., and G. M. Barnes, 2012: The creation of a high equivalent potential temperature reservoir in Tropical Storm Humberto (2001) and its possible role in storm deepening. Mon. Wea. Rev., 140, 492–505, https://doi.org/10.1175/MWR-D-11-00068.1.

    Article  Google Scholar 

  • Durden, S. L., 2013: Observed tropical cyclone eye thermal anomaly profiles extending above 300 hPa. Mon. Wea. Rev., 141, 4256–4268, https://doi.org/10.1175/MWR-D-13-00021.1.

    Article  Google Scholar 

  • Dvorak, V. F., 1975: Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon. Wea. Rev., 103, 420–430, https://doi.org/10.1175/1520-0493(1975)103 <0420:TCIAAF>2.0.CO;2.

    Article  Google Scholar 

  • Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585–604, https://doi.org/10.1175/1520-0469(1986)043 <0585:AASITF>2.0.CO;2.

    Article  Google Scholar 

  • Emanuel, K. A., 1988: The maximum intensity of hurricanes. J. Atmos. Sci., 45, 1143–1155, https://doi.org/10.1175/1520-0469(1988)045<1143:TMIOH>2.0.CO;2.

    Article  Google Scholar 

  • Gao, S., B. Q. Chen, T. Li, N. G. Wu, and W. J. Deng, 2017: AIRSobserved warm core structures of tropical cyclones over the western North Pacific. Dyn. Atmos. Oceans, 77, 100–106, https://doi.org/10.1016/j.dynatmoce.2016.12.001.

    Article  Google Scholar 

  • Hack, J. J., and W. H. Schubert, 1986: Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos. Sci., 43, 1559–1573, https://doi.org/10.1175/1520-0469(1986)043<1559:NROAVT>2.0.CO;2.

    Article  Google Scholar 

  • Hawkins, H. F., and D. T. Rubsam, 1968: Hurricane Hilda, 1964: II. Structure and budgets of the hurricane on October 1, 1964. Mon. Wea. Rev., 96, 617–636, https://doi.org/10.1175/1520-0493(1968)096<0617:HH>2.0.CO;2.

    Google Scholar 

  • Hawkins, H. F., and S. M. Imbembo, 1976: The structure of a small, intense Hurricane-Inez 1966. Mon. Wea. Rev., 104, 418–442, https://doi.org/10.1175/1520-0493(1976)104 <0418:TSOASI>2.0.CO;2.

    Article  Google Scholar 

  • Hazelton, A. T., and R. E. Hart, 2013: Hurricane eyewall slope as determined from airborne radar reflectivity data: Composites and case studies. Wea. Forecasting, 28, 368–386, https://doi.org/10.1175/WAF-D-12-00037.1.

    Article  Google Scholar 

  • Hazelton, A. T., R. Rogers, and R. E. Hart, 2015: Shearrelative asymmetries in tropical cyclone eyewall slope. Mon. Wea. Rev., 143, 883–903, https://doi.org/10.1175/MWR-D-14-00122.1.

    Article  Google Scholar 

  • Hendricks, E. A., B. D. McNoldy, and W. H. Schubert, 2012: Observed inner-core structural variability in Hurricane Dolly (2008). Mon. Wea. Rev., 140, 4066–4077, https://doi.org/10.1175/MWR-D-12-00018.1.

    Article  Google Scholar 

  • Hendricks, E. A., W. H. Schubert, Y.-H. Chen, H.-C. Kuo, and M. S. Peng, 2014: Hurricane eyewall evolution in a forced shallow-water model. J. Atmos. Sci., 71, 1623–1643, https://doi.org/10.1175/JAS-D-13-0303.1.

    Article  Google Scholar 

  • Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54, 2519–2541, https://doi.org/10.1175/1520-0469(1997)054<2519:TMPIOT>2.0.CO;2.

    Article  Google Scholar 

  • Jorgensen, D. P., 1984a: Mesoscale and convective-scale characteristics of mature hurricanes. Part I: General observations by research aircraft. J. Atmos. Sci., 41, 1268–1285, https://doi.org/10.1175/1520-0469(1984)041<1268:MACSCO>2.0.CO;2.

    Article  Google Scholar 

  • Jorgensen, D. P., 1984b: Mesoscale and convective-scale characteristics of mature hurricanes. Part II. Inner core structure of Hurricane Allen (1980). J. Atmos. Sci., 41, 1287–1311, https://doi.org/10.1175/1520-0469(1984)041 <1287:MACSCO>2.0.CO;2.

    Article  Google Scholar 

  • Kimball, S. K., and M. S. Mulekar, 2004: A 15-year climatology of North Atlantic tropical cyclones. Part I: Size parameters. J. Climate, 17, 3555–3575, https://doi.org/10.1175/1520-0442(2004)017<3555:AYCONA>2.0.CO;2.

    Article  Google Scholar 

  • Knaff, J., J. P. Kossin, and M. DeMaria, 2003: Annular hurricanes. Wea. Forecasting, 18, 204–223, https://doi.org/10.1175/1520-0434(2003)018<0204:AH>2.0.CO;2.

    Article  Google Scholar 

  • Kossin, J. P., and W. H. Schubert, 2001: Mesovortices, polygonal flow patterns, and rapid pressure falls in hurricane-like vortices. J. Atmos. Sci., 58, 2196–2209, https://doi.org/10.1175/1520-0469(2001)058<2196:MPFPAR>2.0.CO;2.

    Article  Google Scholar 

  • Kossin, J. P., W. H. Schubert, and M. T. Montgomery, 2000: Unstable interactions between a hurricane’s primary eyewall and a secondary ring of enhanced vorticity. J. Atmos. Sci., 57, 3893–3917, https://doi.org/10.1175/1520-0469 (2001)058<3893:UIBAHS>2.0.CO;2.

    Article  Google Scholar 

  • Kuo, H.-C., R. T. Williams, and J.-H. Chen, 1999: A possible mechanism for the eye rotation of Typhoon Herb. J. Atmos. Sci., 56, 1659–1673, https://doi.org/10.1175/1520-0469(1999)056<1659:APMFTE>2.0.CO;2.

    Article  Google Scholar 

  • Kuo, H.-C., W.-Y. Cheng, Y.-T. Yang, E. A. Hendricks, and M. S. Peng, 2016: Deep convection in elliptical and polygonal eyewalls of tropical cyclones. J. Geophys. Res., 121, 14 456–14 468, https://doi.org/10.1002/2016JD025317.

    Google Scholar 

  • La Seur, N. E., and H. F. Hawkins, 1963: An analysis of Hurricane Cleo (1958) based on data from research reconnaissance aircraft. Mon. Wea. Rev., 91, 694–709, https://doi.org/10.1175/1520-0493(1963)091<0694:AAOHCB>2.3.CO;2.

    Article  Google Scholar 

  • Lewis, B. M., and H. F. Hawkins, 1982: Polygonal eye walls and rainbands in hurricanes. Bull. Amer. Meteor. Soc., 63, 1294–1300, https://doi.org/10.1175/1520-0477(1982)063<1294:PEWARI>2.0.CO;2.

    Article  Google Scholar 

  • Li, Q. Q., Y. Q. Wang, and Y. H. Duan, 2014: Effects of diabatic heating and cooling in the rapid Filamentation zone on structure and intensity of a simulated tropical cyclone. J. Atmos. Sci., 71, 3144–3163, https://doi.org/10.1175/JAS-D-13-0312.1.

    Article  Google Scholar 

  • Li, Q. Q., Y. Q. Wang, and Y. H. Duan, 2015: Impacts of evaporation of rainwater on tropical cyclone structure and intensity-A revisit. J. Atmos. Sci., 72, 1323–1345, https://doi.org/10.1175/JAS-D-14-0224.1.

    Article  Google Scholar 

  • Liu, Y. B., D.-L. Zhang, and M. K. Yau, 1997: A multiscale numerical study of Hurricane Andrew (1992). Part I: Explicit simulation and verification. Mon. Wea. Rev., 125, 3073–3093, https://doi.org/10.1175/1520-0493(1997)125<3073:AMNSOH>2.0.CO;2.

    Article  Google Scholar 

  • Malkus, J. S., 1958: On the structure and maintenance of the mature hurricane eye. J. Meteor., 15, 337–349, https://doi.org/10.1175/1520-0469(1958)015<0337:OTSAMO>2.0.CO;2.

    Article  Google Scholar 

  • Menelaou, K., M. K. Yau, and Y. Martinez, 2013: On the origin and impact of a polygonal eyewall in the rapid intensification of Hurricane Wilma (2005). J. Atmos. Sci., 70, 3839–3858, https://doi.org/10.1175/JAS-D-13-091.1.

    Article  Google Scholar 

  • Mitsuta, Y., and S. Yoshizumi, 1973: Periodic variations of pressure, wind and rainfall observed at Miyakojima during the second Miyakojima Typhoon. J. Meteor. Soc. Japan, 51, 475–485, https://doi.org/10.2151/jmsj1965.51.6475.

    Article  Google Scholar 

  • Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435–465, https://doi.org/10.1002/qj.49712353810.

    Article  Google Scholar 

  • Montgomery, M. T., M. M. Bell, S. D. Aberson, and M. L. Black, 2006: Hurricane Isabel (2003): New insights into the physics of intense storms. Part I: Mean vortex structure and maximum intensity estimates. Bull. Amer. Meteor. Soc., 87, 1335–1347, https://doi.org/10.1175/BAMS-87-10-1335.

    Google Scholar 

  • Muramatsu, T., 1986: The structure of polygonal eye of a typhoon. J. Meteor. Soc. Japan, 64, 913–921, https://doi.org/10.2151/jmsj1965.64.6913.

    Article  Google Scholar 

  • Oda, M., T. Itano, G. Naito, M. Nakanishi, and K. Tomine, 2005: Destabilization of the symmetric vortex and formation of the elliptical eye of Typhoon Herb. J. Atmos. Sci., 62, 2965–2976, https://doi.org/10.1175/JAS3521.1.

    Article  Google Scholar 

  • Persing, J., and M. T. Montgomery, 2003: Hurricane superintensity. J. Atmos. Sci., 60, 2349–2371, https://doi.org/10.1175/1520-0469(2003)060<2349:HS>2.0.CO;2.

    Article  Google Scholar 

  • Reasor, P. D., M. T. Montgomery, F. D. Marks Jr., and J. F. Gamache, 2000: Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar. Mon. Wea. Rev., 128, 1653–1680, https://doi.org/10.1175/1520-0493(2000)128<1653:LWSAEO>2.0.CO;2.

    Article  Google Scholar 

  • Rogers, R., S. Lorsolo, P. Reasor, J. Gamache, and F. Marks, 2012: Multiscale analysis of tropical cyclone kinematic structure from airborne Doppler radar composites. Mon. Wea. Rev., 140, 77–99, https://doi.org/10.1175/MWR-D-10-05075.1.

    Article  Google Scholar 

  • Rogers, R., P. Reasor, and S. Lorsolo, 2013: Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 2970–2991, https://doi.org/10.1175/MWR-D-12-00357.1.

    Article  Google Scholar 

  • Rogers, R. F., P. D. Reasor, and J. A. Zhang, 2015: Multiscale structure and evolution of Hurricane Earl (2010) during rapid intensification. Mon. Wea. Rev., 143, 536–562, https://doi.org/10.1175/MWR-D-14-00175.1.

    Article  Google Scholar 

  • Schubert, W. H., C. M. Rozoff, J. L. Vigh, B. D. McNoldy, and J. P. Kossin, 2007: On the distribution of subsidence in the hurricane eye. Quart. J. Roy. Meteor. Soc., 133, 595–605, https://doi.org/10.1002/qj.49.

    Article  Google Scholar 

  • Schubert, W. H., M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56, 1197–1223, https://doi.org/10.1175/1520-0469 (1999)056<1197:PEAECA>2.0.CO;2.

    Article  Google Scholar 

  • Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378–394, https://doi.org/10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    Article  Google Scholar 

  • Shea, D. J., and W. M. Gray, 1973: The hurricane’s inner core region. I. Symmetric and asymmetric structure. J. Atmos. Sci., 30, 1544–1564, https://doi.org/10.1175/1520-0469(1973)030 <1544:THICRI>2.0.CO;2.

    Google Scholar 

  • Sitkowski, M., and G. M. Barnes, 2009: Low-level thermodynamic, kinematic, and reflectivity fields of Hurricane Guillermo (1997) during rapid intensification. Mon. Wea. Rev., 137, 645–663, https://doi.org/10.1175/2008MWR2531.1.

    Article  Google Scholar 

  • Stern, D. P., and D. S. Nolan, 2009: Reexamining the vertical structure of tangential winds in tropical cyclones: Observations and theory. J. Atmos. Sci., 66, 3579–3600, https://doi.org/10.1175/2009JAS2916.1.

    Article  Google Scholar 

  • Stern, D. P., and D. S. Nolan, 2011: On the vertical decay rate of the maximum tangential winds in tropical cyclones. J. Atmos. Sci., 68, 2073–2094, https://doi.org/10.1175/2011JAS3682.1.

    Article  Google Scholar 

  • Stern, D. P., and F. Q. Zhang, 2013a: How does the eye warm? Part I: A potential temperature budget analysis of an idealized tropical cyclone. J. Atmos. Sci., 70, 73–90, https://doi.org/10.1175/JAS-D-11-0329.1.

    Article  Google Scholar 

  • Stern, D. P., and F. Q. Zhang, 2013b: How does the eye warm? Part II: Sensitivity to vertical wind shear and a trajectory analysis. J. Atmos. Sci., 70, 1849–1873, https://doi.org/10.1175/JASD-12-0258.1.

    Article  Google Scholar 

  • Stern, D. P., and F. Q., Zhang, 2016: The warm-core structure of Hurricane Earl (2010). J. Atmos. Sci., 73, 3305–3328, https://doi.org/10.1175/JAS-D-15-0328.1.

    Article  Google Scholar 

  • Stern, D. P., J. R. Brisbois, and D. S. Nolan, 2014: An expanded dataset of hurricane eyewall sizes and slopes. J. Atmos. Sci., 71, 2747–2762, https://doi.org/10.1175/JAS-D-13-0302.1.

    Article  Google Scholar 

  • Stern, D. P., J. L. Vigh, D. S. Nolan, and F. Q. Zhang, 2015: Revisiting the relationship between eyewall contraction and intensification. J. Atmos. Sci., 72, 1283–1306, https://doi.org/10.1175/JAS-D-14-0261.1.

    Article  Google Scholar 

  • Vigh, J. L., and W. H. Schubert, 2009: Rapid development of the tropical cyclone warm core. J. Atmos. Sci., 66, 3335–3350, https://doi.org/10.1175/2009JAS3092.1.

    Article  Google Scholar 

  • Vigh, J. L., J. A. Knaff, and W. H. Schubert, 2012: A climatology of hurricane eye formation. Mon. Wea. Rev., 140, 1405–1426, https://doi.org/10.1175/MWR-D-11-00108.1.

    Article  Google Scholar 

  • Wang, M. J., M. Xue, K. Zhao, and J. L. Dong, 2014: Assimilation of T-TREC-retrieved winds from single-Doppler radar with an ensemble kalman filter for the forecast of Typhoon Jangmi (2008). Mon. Wea. Rev., 142, 1892–1907, https://doi.org/10.1175/MWR-D-13-00387.1.

    Article  Google Scholar 

  • Wang, Y. Q., 2002: Vortex Rossby waves in a numerically simulated tropical cyclone. Part II: The role in tropical cyclone structure and intensity changes. J. Atmos. Sci., 59, 1239–1262, https://doi.org/10.1175/1520-0469(2002)059 <1239:VRWIAN>2.0.CO;2.

    Google Scholar 

  • Wang, Y. Q., 2008: Structure and formation of an annular hurricane simulated in a fully compressible, nonhydrostatic model-TCM4. J. Atmos. Sci., 65, 1505–1527, https://doi.org/10.1175/2007JAS2528.1.

    Article  Google Scholar 

  • Weatherford, C. L., and W. M. Gray, 1988: Typhoon structure as revealed by aircraft reconnaissance. Part II: Structural variability. Mon. Wea. Rev., 116, 1044–1056, https://doi.org/10.1175/1520-0493(1988)116<1044:TSARBA>2.0.CO;2.

    Google Scholar 

  • Willoughby, H. E., 1998: Tropical cyclone eye thermodynamics. Mon. Wea. Rev., 126, 3053–3067, https://doi.org/10.1175/1520-0493(1998)126<3053:TCET>2.0.CO;2.

    Article  Google Scholar 

  • Ying, M., W. Zhang, H. Yu, X. Q. Lu, J. X. Feng, Y. X. Fan, Y. T. Zhu, and D. Q. Chen, 2014: An overview of the China Meteorological Administration tropical cyclone database. J. Atmos. Oceanic Technol, 31, 287–301, https://doi.org/10.1175/JTECH-D-12-00119.1.

    Article  Google Scholar 

  • Zhang, D.-L., Y. B. Liu, and M. K. Yau, 2002: A multiscale numerical study of Hurricane Andrew (1992). Part V: Inner-core thermodynamics. Mon. Wea. Rev., 130, 2745–2763, https://doi.org/10.1175/1520-0493(2002)130<2745:AMNSOH>2.0.CO;2.

    Google Scholar 

Download references

Acknowledgements

This work was jointly supported by the National (Key) Basic Research and Development (973) Program of China (Grant No. 2015CB452803), the National Key Research and Development Program of China (Grant No. 2017YFC1501601), the National Natural Science Foundation of China (Grant Nos. 41475058, 41730961 and 41575083), the Basic Research Fund of CAMS (Grant No. 2016Z003), and the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhua Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Li, Q., Yu, J. et al. Geometric Characteristics of Tropical Cyclone Eyes before Landfall in South China based on Ground-Based Radar Observations. Adv. Atmos. Sci. 35, 592–603 (2018). https://doi.org/10.1007/s00376-017-7144-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-017-7144-9

Keywords

关键字

Navigation