Skip to main content
Log in

Improved Land Use and Leaf Area Index Enhances WRF-3DVAR Satellite Radiance Assimilation: A Case Study Focusing on Rainfall Simulation in the Shule River Basin during July 2013

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The application of satellite radiance assimilation can improve the simulation of precipitation by numerical weather prediction models. However, substantial quantities of satellite data, especially those derived from low-level (surface-sensitive) channels, are rejected for use because of the difficulty in realistically modeling land surface emissivity and energy budgets. Here, we used an improved land use and leaf area index (LAI) dataset in the WRF-3DVAR assimilation system to explore the benefit of using improved quality of land surface information to improve rainfall simulation for the Shule River Basin in the northeastern Tibetan Plateau as a case study. The results for July 2013 show that, for low-level channels (e.g., channel 3), the underestimation of brightness temperature in the original simulation was largely removed by more realistic land surface information. In addition, more satellite data could be utilized in the assimilation because the realistic land use and LAI data allowed more satellite radiance data to pass the deviation test and get used by the assimilation, which resulted in improved initial driving fields and better simulation in terms of temperature, relative humidity, vertical convection, and cumulative precipitation.

摘 要

同化卫星辐射数据可提高数值天气模式的预测精度. 但由于地表信息的不准确, 以往研究中通常会剔除对地表较敏感的低层通道中的辐射数据, 从而大大降低了卫星数据的使用率. 本研究以青藏高原东北部疏勒河流域2013年7月份降水模拟为例, 通过更新WRF-3DVAR同化系统中下垫面土地利用类型和叶面积指数数据, 来分析改进的土地覆被对辐射资料同化的影响. 结果表明, 更新土地覆被后, 在对地表敏感的窗区通道中, 模拟的辐射亮温值与实际观测值更为接近, 使更多的卫星数据通过偏差检验并在同化系统中得到应用. 而对于非窗区通道, 土地覆被更新对辐射亮温的模拟影响较小. 同化系统中卫星辐射资料利用率的提高使WRF模式对研究区内降水的模拟得到了一定程度的改进.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson, E., J. Pailleux, J. N. Thépaut, J. R. Eyre, A. P. McNally, G. A. Kelly, and P. Courtier, 1994: Use of cloud-cleared radiances in three/four-dimensional variational data assimilation. Quar. J. Roy. Meteor. Soc., 120(517), 627–653, https://doi.org/10.1002/qj.49712051707.

    Article  Google Scholar 

  • Barker, D. M., W. Huang, Y. R. Guo, A. J. Bourgeois, and Q. N. Xiao, 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132(4), 897–914, https://doi.org/10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2.

    Article  Google Scholar 

  • Bauer, P., P. Lopez, A. Benedetti, D. Salmond, S. Saarinen, and M. Bonazzola, 2006: Implementation of 1D+4D-Var assimilation of precipitation-affected microwave radiances in precipitation at ECMWF. II: 4D-Var. Quart. J. Roy. Meteor. Soc., 132(620), 2307–2332, https://doi.org/10.1256/qj.06.07.

    Article  Google Scholar 

  • Cassardo, C., G. P. Balsamo, C. Cacciamani, D. Cesari, T. Paccagnella, and R. Pelosini, 2002: Impact of soil surface moisture initialization on rainfall in a limited area model: A case study of the 1995 South Ticino flash flood. Hydrological Processes, 16(6), 1301–1317, https://doi.org/10.1002/hyp. 1063.

    Article  Google Scholar 

  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surfacehydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129(4), 569–585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    Article  Google Scholar 

  • Chen, F., Z. Janjić, and K. Mitchell, 1997: Impact of atmospheric surface-layer parameterizations in the new land surface scheme of the NCEP mesoscale ETA model. Bound.-Layer Meteor., 85(3), 391–421, https://doi.org/10.1023/A:1000531001463.

    Article  Google Scholar 

  • Chen, F., J. Dudhia, Z. Janjic, and M. Baldwin, 1997: Coupling a land surface model to the NCEP mesoscale Eta model. Preprints, 13th Conf. on Hydrology, Long Beach, CA: American Meteorological Society, 99–100.

    Google Scholar 

  • Chen, S. H., and W. Y. Sun, 2002: A one-dimensional time dependent cloud model. J. Meteor. Soc. Japan, 80(1), 99–118, https://doi.org/10.2151/jmsj.80.99.

    Article  Google Scholar 

  • Dai, S. P., B. Zhang, H. J. Wang, Y. M. Wang, L. X. Guo, X. M. Wang, and D. Li, 2010: Vegetation cover change and its driving factors over northwest China. Arid Land Geography, 33(4), 636–643, https://doi.org/10.13826/j.cnki.cn65-1103/x.2010.04.020. (in Chinese)

    Google Scholar 

  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46(20), 3077–3107, https://doi.org/10.1175/1520-0469(1989)046<3077: NSOCOD>2.0.CO;2.

    Article  Google Scholar 

  • Eyre, J. R., 1989: Inversion of cloudy satellite sounding radiances by nonlinear optimal estimation. II: Application to TOVS data. Quart. J. Roy. Meteor. Soc., 115(489), 1027–1037, https://doi.org/10.1002/qj.49711548903.

    Article  Google Scholar 

  • Eyre, J. R., G. A. Kelly, A. P. McNally, E. Andersson, and A. Persson, 1993: Assimilation of TOVS radiance information through one-dimensional variational analysis. Quart. J. Roy. Meteor. Soc., 119(514), 1427–1463, https://doi.org/10.1002/qj.49711951411.

    Article  Google Scholar 

  • Friedl, M. A., D. K. McIver, J. C. F. Hodges, X. Y. Zhang, D. Muchoney, A. H. Strahler, C. E. Woodcock, S. Gopal, A. Schneider, A. Cooper, A. Baccini, F. Gao, and C. Schaaf, 2002: Global land cover mapping from MODIS: Algorithms and early results. Remote Sensing of Environment, 83(1–2), 287–302, https://doi.org/10.1016/S0034-4257(02)00078-0.

    Article  Google Scholar 

  • Gao, X. J., D. F. Zhang, Z. X. Chen, J. S. Pal, and F. Giorgi, 2007: Land use effects on climate in China as simulated by a regional climate model. Science in China Series D: Earth Sciences, 50(4), 620–628, https://doi.org/10.1007/s11430-007-2060-y.

    Article  Google Scholar 

  • Gao, Y. H., F. Chen, M. Barlage, W. Liu, G. D. Cheng, X. Li, Y. Yu, Y. H. Ran, H. Y. Li, H. C. Peng, and M. G. Ma, 2008: Enhancement of land surface information and its impact on atmospheric modeling in the Heihe River Basin, Northwest China. J. Geophys. Res., 113(D20), https://doi.org/10.1029/2008JD010359.

    Google Scholar 

  • Gao, Y. H., L. H. Xiao, D. L. Chen, F. Chen, J. W. Xu, and Y. Xu, 2017: Quantification of the relative role of land surface processes and large-scale forcing in dynamic downscaling over the Tibetan Plateau. Climate Dyn., 48, 1705–1721, https://doi.org/10.1007/s00382-016-3168-6.

    Article  Google Scholar 

  • Grell, G. A., and D. Dévényi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 38-1–38-4, https://doi.org/10.1029/2002GL015311.

    Article  Google Scholar 

  • He, W. Y., Z. Q. Liu, and H. B. Chen, 2011: Influence of surface temperature and emissivity on AMSU-A assimilation over land. Acta Meteorologica Sinica, 25(5), 545–557, https://doi.org/10.1007/s13351-011-0501-1.

    Article  Google Scholar 

  • He, Y., H. Yang, T. D. Yao, and J. He, 2012: Numerical simulation of a heavy precipitation in Qinghai-Xizang plateau based on WRF model. Plateau Meteorology, 31(5), 1183–1191. (in Chinese)

    Google Scholar 

  • Ide, K., P. Courtier, M. Ghil, and A. C. Lorenc, 1999: Unified notation for data assimilation: Operational, sequential and variational. J. Meteor. Soc. Japan, 75, 181–189, https://doi.org/10.2151/jmsj1965.75.1B 181.

    Article  Google Scholar 

  • Ji, Z. M., and S. C. Kang, 2013: Double nested dynamical downscaling experiments over the Tibetan Plateau and their projection of climate change under RCP scenarios. J. Atmos. Sci., 70(4), 1278–1290, https://doi.org/10.1175/JAS-D-12-0155.1.

    Article  Google Scholar 

  • Ji, Z. M., S. C. Kang, Q. G. Zhang, Z. Y. Cong, P. F. Chen, and M. Sillanpää, 2016: Investigation of mineral aerosols radiative effects over High Mountain Asia in 1990-2009 using a regional climate model. Atmos. Res., 178–179, 484–496, https://doi.org/10.1016/j.atmosres.2016.05.003.

    Article  Google Scholar 

  • Li, X., M. J. Zeng, Y. Wang, W. L. Wang, H. Y. Wu, and H. X. Mei, 2016: Evaluation of two momentum control variable schemes and their impact on the variational assimilation of radar wind data: Case study of a squall line. Adv. Atmos. Sci., 33(10), 1143–1157, https://doi.org/10.1007/s00376-016-5255-3.

    Article  Google Scholar 

  • Li, Z. H., Z. Q. Gao, W. Gao, R. H. Shi, and C. S. Liu, 2011: Spatio-temporal feature of land use/land cover dynamic changes in China from 1999 to 2009. Transactions of the CSAE, 27(2), 312–322, https://doi.org/10.3969/j.issn.1002-6819.2011.02.054. (in Chinese)

    Google Scholar 

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102(14), 16 663–16 682, https://doi.org/10.1029/97JD00237.

    Article  Google Scholar 

  • Parrish, D. F., and J. C. Derber, 1992: The national meteorological center’s spectral statistical-interpolation analysis system. Mon. Wea. Rev., 120, 1747–1763, https://doi.org/10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2.

    Article  Google Scholar 

  • Rakesh, V., R. Singh, and P. C. Joshi, 2009: Intercomparison of the performance of MM5/WRF with and without satellite data assimilation in short-range forecast applications over the Indian region. Meteor. Atmos. Phys., 105, 133–155, https://doi.org/10.1007/s00703-009-0038-3.

    Article  Google Scholar 

  • Routray, A., U. C. Mohanty, D. Niyogi, S. R. H. Rizvi, and K. K. Osuri, 2010: Simulation of heavy rainfall events over Indian monsoon region using WRF-3DVAR data assimilation system. Meteor. Atmos. Phys., 106, 107–125, https://doi.org/10.1007/s00703-009-0054-3.

    Article  Google Scholar 

  • Santos-Alamillos, F. J., D. Pozo-Vázquez, J. A. Ruiz-Arias, and J. Tovar-Pescador, 2015: Influence of land-use misrepresentation on the accuracy of WRF wind estimates: Evaluation of GLCC and CORINE land-use maps in southern Spain. Atmo. Res., 157, 17–28, https://doi.org/10.1016/j.atmosres. 2015.01.006.

    Article  Google Scholar 

  • Schaefer, J. T., 1990: The critical success index as an indicator of warning skill. Wea. Forecasting, 5, 570–275, https://doi.org/10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2.

    Article  Google Scholar 

  • Shen, Y., M. N. Feng, H. Z. Zhang, and F. Gao, 2010a: Interpolation methods of China daily precipitation data. Journal of Applied Meteorological Science, 21(3), 279–286, https://doi.org/10.3969/j.issn.1001-7313.2010.03.003. (in Chinese)

    Google Scholar 

  • Shen, Y., A. Y. Xiong, Y. Wang, and P. P. Xie, 2010b: Performance of high-resolution satellite precipitation products over China. J. Geophys. Res., 115(D2), https://doi.org/10.1029/2009JD012097.

    Google Scholar 

  • Singh, R., C. M. Kishtawal, P. K. Pal, and P. C. Joshi, 2011: Improved tropical cyclone forecasts over north Indian Ocean with direct assimilation of AMSU-A radiances. Meteor. Atmos. Phys., 115, 15–34, https://doi.org/10.1007/s00703-011-0165-5.

    Article  Google Scholar 

  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. D. Powers, 2005: A description of the Advanced Research WRF version 2. Tech. Rep. NCAR/TN-468+STR, National Center for Atmospheric Research, Boulder, Colorado, 8 pp, https://doi.org/10.5065/D6DZ069T.

    Google Scholar 

  • Sokol, Z., 2009: Effects of an assimilation of radar and satellite data on a very-short range forecast of heavy convective rainfalls. Atmos. Res., 93, 188–206, https://doi.org/10.1016/j.atmosres.2008.11.001.

    Article  Google Scholar 

  • Sokol, Z., 2011: Assimilation of extrapolated radar reflectivity into a NWP model and its impact on a precipitation forecast at high resolution. Atmos. Res., 100(2–3), 201–212, https://doi.org/10.1016/j.atmosres.2010.09.008.

    Article  Google Scholar 

  • Stensrud, D. J., N. Yussouf, D. C. Dowell, and M. C. Coniglio, 2009: Assimilating surface data into a mesoscale model ensemble: Cold pool analyses from spring 2007. Atmos. Res., 93(1–3), 207–220, https://doi.org/10.1016/j.atmosres.2008. 10.009.

    Article  Google Scholar 

  • Weng, F. Z., Y. Han, P. Van Delst, Q. H. Liu, T. Kleespies, B. H. Yan, and J. Le Marshall, 2005: JCSDA community radiative transfer model (CRTM). Proceedings of the 14th International TOVS Study Conference, Beijing, China, International TOVS Working Group, 122 pp.

    Google Scholar 

  • Xiong, C. H., L. F. Zhang, J. P. Guan, J. Peng, and B. Zhang, 2013: Analysis and numerical study of a hybrid BGM-3DVAR data assimilation scheme using satellite radiance data for heavy rain forecasts. Journal of Hydrodynamics, Ser. B, 25(3), 430–439, https://doi.org/10.1016/S1001-6058(11)60382-0.

    Article  Google Scholar 

  • Xu, Y. M., Y. Zhang, and L. Bai, 2016: Study on the spatiotemporal variations of vegetation fraction in Zoige based on remote sensing data. Plateau Meteorology, 35(3), 643–650, https://doi.org/10.7522/j.issn.1000-0534.2015.00040. (in Chinese)

    Google Scholar 

  • Xu, Y. M., Y. H. Liu, M. Wei, and J. J. Lv, 2007: Land cover classification of the Yangtze River delta using MODIS data. Acta Geographica Sinica, 62(5), 640–648, https://doi.org/10.11821/xb200706009. (in Chinese)

    Google Scholar 

  • Yang, J. H., and K. Q. Duan, 2016: Effects of initial drivers and land use on WRF modeling for near-surface fields and atmospheric boundary layer over the northeastern Tibetan Plateau. Advances in Meteorology, Article ID 7849249, https://doi.org/10.1155/2016/7849249.

    Google Scholar 

  • Zhang, J., R. Z. Zhang, and D. M. Zhou, 2012: A study on water resource carrying capacity in the Shule River Basin based on ecological footprints. Acta Prataculturae Sinica, 21(4), 267–274. (in Chinese)

    Google Scholar 

  • Zheng, W. Z., L. W. He, Z. Wang, X. B. Zeng, J. Meng, M. Ek, K. Mitchell, and J. Derber, 2012: Improvement of daytime land surface skin temperature over arid regions in the NCEP GFS model and its impact on satellite data assimilation. J. Geophys. Res., 117(D6), D06117, https://doi.org/10.1029/2011JD015901.

    Article  Google Scholar 

  • Zheng, X., N. A. Wang, Z. L. Li, X. N. Zhang, and L. Wang, 2010: Analysis on land use/cover change during 1990-2005 in Shule River Basin. Journal of Desert Research, 30(4), 857–861, (in Chinese)

    Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key Research and Development Program of China (Grant No.2016YFA0602701), the National Natural Science Foundation of China (Grant Nos. 41721091, 41630754, 91644225), and the Open Program (Grant No.SKLCS-OP-2017-02) from the State Key Laboratory of Cryospheric Science, Northwest Institute of Eco- Environment and Resources, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenming Ji.

Electronic supplementary material

376_2017_7120_MOESM1_ESM.pdf

Electronic Supplementary Material to: Improved Land Use and Leaf Area Index Enhances WRF-3DVAR Satellite Radiance Assimilation: A Case Study Focusing on Rainfall Simulation in the Shule River Basin during July 2013

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Ji, Z., Chen, D. et al. Improved Land Use and Leaf Area Index Enhances WRF-3DVAR Satellite Radiance Assimilation: A Case Study Focusing on Rainfall Simulation in the Shule River Basin during July 2013. Adv. Atmos. Sci. 35, 628–644 (2018). https://doi.org/10.1007/s00376-017-7120-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-017-7120-4

Key words

关键词

Navigation