Skip to main content
Log in

Decadal Indian Ocean dipolar variability and its relationship with the tropical Pacific

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

A robust decadal Indian Ocean dipolar variability (DIOD) is identified in observations and found to be related to tropical Pacific decadal variability (TPDV). A Pacific Ocean–global atmosphere (POGA) experiment, with fixed radiative forcing, is conducted to evaluate the DIOD variability and its relationship with the TPDV. In this experiment, the sea surface temperature anomalies are restored to observations over the tropical Pacific, but left as interactive with the atmosphere elsewhere. The TPDV-forced DIOD, represented as the ensemble mean of 10 simulations in POGA, accounts for one third of the total variance. The forced DIOD is triggered by anomalous Walker circulation in response to the TPDV and develops following Bjerknes feedback. Thermocline anomalies do not exhibit a propagating signal, indicating an absence of oceanic planetary wave adjustment in the subtropical Indian Ocean. The DIOD–TPDV correlation differs among the 10 simulations, with a low correlation corresponding to a strong internal DIOD independent of the TPDV. The variance of this internal DIOD depends on the background state in the Indian Ocean, modulated by the thermocline depth off Sumatra/Java.

摘 要

观测数据显示印度洋偶极子存在明显的年代际变率(DIOD)且与热带太平年代际变率(TPDV)紧密相连. 固定大气辐射的 Pacific Ocean-global atmosphere(POGA) 试验被用来评估 DIOD 变率及其与 TPDV 之间的关系. 试验中热带太平洋的海表温度异常被固定为观测值, 其余海域则与大气充分耦合. 利用10组试验的集合平均代表 TPDV 强迫的 DIOD, 其贡献占总方差的三分之一. TPDV 可以通过调节Walker环流激发出赤道印度洋风场异常, 而这样的初始异常通过 Bjerknes 正反馈机制发展成为 DIOD. 而在年代际时间尺度上, 温跃层异常并没有表现出的传播特征, 表明副热带海盆的海洋行星波动调整过程并不显著. DIOD-TPDV 相关系数在 10 组试验中有着较大的差别. 当 DIOD内部变率(独立于 TPDV 的 DIOD 变率)很强时, TPDV-DIOD 相关系数低. DIOD 内部变率的强弱受热带印度洋背景场, 特别是 Sumatra/Java 近岸的温跃层深度的调节.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abram, N. J., M. K. Gagan, J. E. Cole, W. S. Hantoro, and M. Mudelsee, 2008: Recent intensification of tropical climate variability in the Indian Ocean. Nat. Geosci., 1, 849–853, doi: 10.1038/ngeo357.

    Article  Google Scholar 

  • Allan, R. J., J. A. Lindesay, and C. J. C. Reason, 1995: Multidecadal variability in the climate system over the Indian Ocean region during the austral summer. J. Climate, 8, 1853–1873, doi: 10.1175/1520-0442(1995)008<1853:MVITCS>2.0.CO;2.

    Article  Google Scholar 

  • Ashok, K., W.-L. Chan, T. Motoi, and T. Yamagata, 2004: Decadal variability of the Indian Ocean dipole. Geophys. Res. Lett., 31, L24207, doi: 10.1029/2004GL021345.

    Article  Google Scholar 

  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon.Wea. Rev., 97, 163–172, doi: 10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    Article  Google Scholar 

  • Cai, W., T. Cowan, and A. Sullivan, 2009: Recent unprecedented skewness towards positive Indian Ocean dipole occurrences and its impact on Australian rainfall. Geophys. Res. Lett., 36, L11705, doi: 10.1029/2009GL037604.

    Article  Google Scholar 

  • Cai, W. J., A. Santoso, G. J. Wang, E. Weller, L. X. Wu, K. Ashok, Y. Masumoto, and T. Yamagata, 2014: Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming. Nature, 510, 254–258, doi: 10.1038/nature13327.

    Article  Google Scholar 

  • Chen, X. Y., and J. M. Wallace, 2015: ENSO-like variability: 1900–2013. J. Climate, 28, 9623–9641, doi: 10.1175/JCLID-15-0322.1.

    Article  Google Scholar 

  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J Climate, 19, 643–674, doi: 10.1175/JCLI3629.1.

    Article  Google Scholar 

  • Dong, L., T. J. Zhou, and B. Wu, 2014: Indian Ocean warming during 1958-2004 simulated by a climate system model and its mechanism. Climate Dyn., 42, 203–217, doi: 10.1007/s00382-013-1722-z.

    Article  Google Scholar 

  • Dong, L., T. J. Zhou, A. G. Dai, F. F. Song, B. Wu, and X. L. Chen, 2016: The footprint of the inter-decadal Pacific oscillation in Indian Ocean sea surface temperatures. Sci. Rep., 6, 21251, doi: 10.1038/srep21251.

    Article  Google Scholar 

  • Guan, Z. Y., K. Ashok, and T. Yamagata, 2003: Summertime response of the tropical atmosphere to the Indian Ocean dipole sea surface temperature anomalies. J. Meteor. Soc. Japan, 81, 531–561, doi: 10.2151/jmsj.81.533.

    Article  Google Scholar 

  • Han, W. Q., and Coauthors, 2014a: Intensification of decadal and multi-decadal sea level variability in the western tropical Pacific during recent decades. Climate Dyn., 43, 1357–1379, doi: 10.1007/s00382-013-1951-1.

    Article  Google Scholar 

  • Han, W. Q., J. Vialard, M. J. McPhaden, T. Lee, Y. Masumoto, M. Feng, and W. P. M. de Ruijter, 2014b: Indian Ocean decadal variability: A review. Bull. Amer. Meteor. Soc., 95, 1679–1703, doi: 10.1175/BAMS-D-13-00028.1.

    Article  Google Scholar 

  • Hirahara, S., M. Ishii, and Y. Fukuda, 2014: Centennial-scale sea surface temperature analysis and its uncertainty. J. Climate, 27, 57–75. doi: 10.1175/JCLI-D-12-00837.1.

    Article  Google Scholar 

  • Ihara, C., Y. Kushnir, and M. A. Cane, 2008: Warming trend of the Indian Ocean SST and Indian Ocean dipole from 1880 to 2004. J. Climate, 21, 2035–2046, doi: 10.1175/2007 JCLI1945.1.

    Article  Google Scholar 

  • Kaplan, A., M. A. Cane, Y. Kushnir, A. C. Clement, M. B. Blumenthal, and B. Rajagopalan, 1998: Analyses of global sea surface temperature 1856–1991. J. Geophys. Res., 103(C9), 18567–18589, doi: 10.1029/97JC01736.

    Article  Google Scholar 

  • Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403–407, doi: 10.1038/nature12534.

    Article  Google Scholar 

  • Kosaka, Y., S.-P. Xie, N.-C. Lau, and G. A. Vecchi, 2013: Origin of seasonal predictability for summer climate over the Northwestern Pacific. Proceedings of the National Academy of Sciences of the United States of America, 110, 7574–7579, doi: 10.1073/pnas.1215582110.

    Article  Google Scholar 

  • Kug, J.-S., and I.-S. Kang, 2006: Interactive feedback between ENSO and the Indian Ocean. J Climate, 19, 1784–1801, doi: 10.1175/JCLI3660.1.

    Article  Google Scholar 

  • Lee, T., and M. J. McPhaden, 2008: Decadal phase change in large-scale sea level and winds in the Indo-Pacific region at the end of the 20th century. Geophys. Res. Lett., 35, L01605, doi: 10.1029/2007GL032419.

    Google Scholar 

  • Luo, J. J., R. C. Zhang, S. K. Behera, Y. Masumoto, F.-F. Jin, R. Lukas, and T. Yamagata, 2010: Interaction between El Ni˜no and extreme Indian Ocean dipole. J. Climate, 23, 726–742, doi: 10.1175/2009JCLI3104.1.

    Article  Google Scholar 

  • Luo, J. J., W. Sasaki, and Y. Masumoto, 2012: Indian Ocean warming modulates Pacific climate change. Proceedings of the National Academy of Sciences of the United States of America, 109, 18701–18706, doi: 10.1073/pnas.1210239109.

    Article  Google Scholar 

  • Meehl, G. A., and A. X. Hu, 2006: Megadroughts in the Indian monsoon region and southwest North America and a mechanism for associated multidecadal Pacific sea surface temperature anomalies. J Climate, 19, 1605–1623, doi: 10.1175/JCLI3675.1.

    Article  Google Scholar 

  • Power, S., T. Casey, C. Folland, A. Colman, and V. Mehta, 1999: Inter-decadal modulation of the impact of ENSO on Australia. Climate Dyn., 15, 319–324, doi: 10.1007/s003820050284.

    Article  Google Scholar 

  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi: 10.1029/2002JD002670.

    Article  Google Scholar 

  • Saji, N. H., and T. Yamagata, 2003: Possible impacts of Indian Ocean Dipole mode events on global climate. Climate Research, 25, 151–169, doi: 10.3354/cr025151.

    Article  Google Scholar 

  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360–363.

    Google Scholar 

  • Saji, N. H., S.-P. Xie, and T. Yamagata, 2006: Tropical Indian Ocean variability in the IPCC twentieth-century climate simulations. J. Climate, 19, 4397–4417, doi: 10.1175/JCLI3847.1.

    Article  Google Scholar 

  • Tozuka, T., J. J. Luo, S. Masson, and T. Yamagata, 2007: Decadal modulations of the Indian Ocean dipole in the SINTEX-F1 coupled GCM. J. Climate, 20, 2881–2894, doi: 10.1175/JCLI4168.1.

    Article  Google Scholar 

  • Webster, P. J., A. M. Moore, J. P. Loschnigg, and R. R. Leben, 1999: Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401, 356–360, doi: 10.1038/43848.

    Article  Google Scholar 

  • Wu, L., Z. Liu, R. Gallimore, R. Jacob, D. Lee, and Y. Zhong, 2003: Pacific decadal variability: The tropical Pacific mode and the North Pacific mode. J. Climate, 16, 1101–1120, doi: 10.1175/1520-0442(2003)16<1101:PDVTTP>2.0.CO;2.

    Article  Google Scholar 

  • Xie, S.-P., C. Deser, G. A. Vecchi, J. Ma, H. Y. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966–986, doi: 10.1175/2009JCLI3329.1.

    Article  Google Scholar 

  • Yamagata, T., S. K. Behera, J.-J. Luo, S. Masson, M. R. Jury, and S. A. Rao, 2004: Coupled ocean–atmosphere variability in the tropical Indian Ocean. Earth’s Climate: The Ocean–Atmosphere Interaction, vol. 147, Geophysical Monograph Series, C. Wang, S. P. Xie, and J. A. Carton, Eds., American Geophysical Union, 189–212, doi: 10.1029/147GM12.

    Google Scholar 

  • Yang, Y., L. X. Wu, and C. F. Fang, 2012: Will global warming suppress North Atlantic Tripole decadal variability? J. Climate, 25, 2040–2055, doi: 10.1175/JCLI-D-11-00164.1.

    Article  Google Scholar 

  • Yang, Y., S.-P. Xie, L. X. Wu, Y. Kosaka, N.-C. Lau, and G. A. Vecchi, 2015: Seasonality and predictability of the Indian Ocean dipole mode: ENSO forcing and internal variability. J. Climate, 28, 8021–8036, doi: 10.1175/JCLI-D-15-0078.1.

    Article  Google Scholar 

  • Yang, Y., S.-P. Xie, L. X. Wu, Y. Kosaka, and J. P. Li, 2017: ENSO forced and local variability of North Tropical Atlantic SST: Model simulations and biases. Climate Dyn., doi: 10.1007/s00382-017-3679-9.

    Google Scholar 

  • Yu, J.-Y., and K. M. Lau, 2004: Contrasting Indian Ocean SST variability with and without ENSO influence: A coupled atmosphere–ocean GCM study. Meteor. Atmos. Phys., 90, 179–191, doi: 10.1007/s00703-004-0094-7.

    Article  Google Scholar 

  • Yu, J.-Y., C. R. Mechoso, J. C. McWilliams, and A. Arakawa, 2002: Impacts of the Indian Ocean on the ENSO cycle. Geophys. Res. Lett., 29(8), 46-1–46-4, doi: 10.1029/2001 GL014098.

    Article  Google Scholar 

  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 1004–1020, doi: 10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    Article  Google Scholar 

  • Zheng, X. T., S.-P. Xie, G. A. Vecchi, Q. Y. Liu, and J. Hafner, 2010: Indian Ocean dipole response to global warming: Analysis of ocean–atmospheric feedbacks in a coupled model. J. Climate, 23, 1240–1253, doi: 10.1175/2009JCLI3326.1.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Key R&D Program of China (2016YFA0601803), National Natural Science Foundation of China (NSFC) project (41606008, 41525019), the State Oceanic Administration of China (GASI-IPOVAI-02), the State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences (Project No. LTO1603), the Japan Society for the Promotion of Science [Grantin- Aid for Young Scientists (A) JP15H05466], and the Japanese Ministry of Environment (Environment Research and Technology Development Fund 2-1503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Li, J., Wu, L. et al. Decadal Indian Ocean dipolar variability and its relationship with the tropical Pacific. Adv. Atmos. Sci. 34, 1282–1289 (2017). https://doi.org/10.1007/s00376-017-7009-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-017-7009-2

Key words

关键词

Navigation