Skip to main content
Log in

Sensitivity of potential evapotranspiration estimation to the Thornthwaite and Penman–Monteith methods in the study of global drylands

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Drylands are among those regions most sensitive to climate and environmental changes and human-induced perturbations. The most widely accepted definition of the term dryland is a ratio, called the Surface Wetness Index (SWI), of annual precipitation to potential evapotranspiration (PET) being below 0.65. PET is commonly estimated using the Thornthwaite (PET Th) and Penman–Monteith equations (PET PM). The present study compared spatiotemporal characteristics of global drylands based on the SWI with PET Th and PET PM. Results showed vast differences between PET Th and PET PM; however, the SWI derived from the two kinds of PET showed broadly similar characteristics in the interdecadal variability of global and continental drylands, except in North America, with high correlation coefficients ranging from 0.58 to 0.89. It was found that, during 1901–2014, global hyper-arid and semi-arid regions expanded, arid and dry sub-humid regions contracted, and drylands underwent interdecadal fluctuation. This was because precipitation variations made major contributions, whereas PET changes contributed to a much lesser degree. However, distinct differences in the interdecadal variability of semi-arid and dry sub-humid regions were found. This indicated that the influence of PET changes was comparable to that of precipitation variations in the global dry–wet transition zone. Additionally, the contribution of PET changes to the variations in global and continental drylands gradually enhanced with global warming, and the Thornthwaite method was found to be increasingly less applicable under climate change.

摘要

干旱区是对气候变化和人类活动响应最为敏感的地区之一. 通常将地表湿润指数(SWI, 年降水量与潜在蒸散发PET的比值)小于0.65的区域定义为干旱区. Thornthwaite方法和Penman–Monteith方法是当前估算PET的两种常用算法. 本文在年代际尺度上比较分析了基于这两种PET算法时全球干旱区面积的时空变化特征. 结果发现虽然两种方法估算的PET在时空特征上存在显著的差异, 但基于这两种PET得到的全球和各大陆(北美洲除外)的干旱区面积呈现出相似的年代际变化, 相关系数为0.58~0.89. 二者均显示出1901-2014年全球总干旱区面积呈现出明显的年代际振荡, 其中极端干旱区和半干旱区显著扩张, 干旱区和干湿过渡带显著缩小. 这是因为全球降水的年代际变化主导了全球干旱区面积的年代际变化, 而PET变化的贡献次之. 同时也发现, 在干湿过渡带上, PET与降水变化的贡献相当, 这使得两种算法得到的全球半干旱区和干湿过渡带面积的年代际变化存在明显的差异, 且这种现象在北美最为明显. 此外, 上世纪80年代以后, 两种算法均显示PET的年代际变化对全球干旱区面积年代际变化的贡献逐渐加大. 因此在当前和未来情景下, 在全球干旱区面积变化的研究中, 采用Penman–Monteith方法估算PET更为合理.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, R. G., M. Smith, A. Perrier, and L. S. Pereira, 1994a: An update for the definition of reference evapotranspiration. ICID Bulletin, 43, 1–34.

    Google Scholar 

  • Allen, R. G., M. Smith, A. Perrier, and L. S. Pereira, 1994b: An update for the calculation of reference evapotranspiration. ICID Bulletin, 43, 35–92.

    Google Scholar 

  • An, L. J., F. M. Ren, Y. J. Li, and Y. P. Li, 2014: Study on characteristics of regional drought events over north China during the past 50 years. Meteorological Monthly, 40, 1097–1105, doi: 10.7519/j.issn.1000-0526.2014.09.007. (in Chinese with English abstract)

    Google Scholar 

  • Beguería, S., S. M. Vicente-Serrano, F. Reig, and B. Latorre, 2014: Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. International Journal of Climatology, 34, 3001–3023, doi: 10.1002/joc.3887.

    Article  Google Scholar 

  • Bontemps, S., P. Defourny, E. Van Bogaert, O. Arino, V. Kalagirou, and J. R. Perez, 2011: GlobCover 2009: Products description and validation report. [Available online from http://ionia1.esrin.esa.int/docs/GLOBCOVER2009 Validation Report 2.]

    Google Scholar 

  • Cong, Z. T., D. W. Yang, and G. H. Ni, 2009: Does evaporation paradox exist in China? Hydrology and Earth System Sciences, 13, 357–366.

    Article  Google Scholar 

  • Dai, A. G., 2011: Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900-2008. J. Geophys. Res., 116, D12115, doi: 10.1029/2010JD015541.

    Article  Google Scholar 

  • Dai, A. G., 2013: Increasing drought under global warming in observations and models. Nat. Clim. Change, 3, 52–58, doi:10.1038/nclimate1633.

    Article  Google Scholar 

  • Feng, S., and Q. Fu, 2013: Expansion of global drylands under a warming climate. Atmospheric Chemistry and Physics, 13, 10 081–10 094, doi: 10.5194/acp-13-10081-2013.

    Article  Google Scholar 

  • Feng, S., M. Trnka, M. Hayes, and Y. J. Zhang, 2017: Why do different drought indices show distinct future drought risk outcomes in the U.S. great plains? J. Climate, 30, 265–278, doi: 10.1175/JCLI-D-15-0590.1.

    Article  Google Scholar 

  • Food and Agriculture Organization of the United Nations, 2008: Water and cereals in drylands. Food and Agriculture Organization of the United Nations, Roma.

    Google Scholar 

  • Fu, G. B., S. P. Charles, and J. J. Yu, 2009: A critical overview of pan evaporation trends over the last 50 years. Climatic Change, 97, 193–214, doi: 10.1007/s10584-009-9579-1.

    Article  Google Scholar 

  • Gao, G., D. L. Chen, G. Y. Ren, Y. Chen, and Y. M. Liao, 2006: Spatial and temporal variations and controlling factors of potential evapotranspiration in China: 1956-2000. Journal of Geographical Sciences, 16, 3–12, doi: 10.1007/s11442-006-0101-7.

    Article  Google Scholar 

  • Gao, G., D. L. Chen, C.-Y. Xu, and E. Simelton, 2007: Trend of estimated actual evapotranspiration over China during 1960-2002. J. Geophys. Res., 112, D11120, doi: 10.1029/2006JD008010.

    Article  Google Scholar 

  • Hargreaves, G. H., and R. G. Allen, 2003: History and Evaluation of Hargreaves Evapotranspiration Equation. Journal of Irrigation and Drainage Engineering, 129, 53–63, doi: 10.1061/(ASCE)0733-9437(2003)129:1(53).

    Article  Google Scholar 

  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observationsthe CRU TS3.10 Dataset. International Journal of Climatology, 34, 623–642, doi: 10.1002/joc.3711.

    Article  Google Scholar 

  • Heim, R. R., Jr., 2002: A review of twentieth-century drought indices used in the United States. Bull. Amer. Meteor. Soc., 83, 1149–1165, doi: 10.1175/1520-0477(2002)083<1149:AROTDI>2.3.CO;2.

    Article  Google Scholar 

  • Huang, J. P., H. P. Yu, X. D. Guan, G. Y. Wang, and R. X. Guo, 2016a: Accelerated dryland expansion under climate change. Nat. Clim. Change, 6, 166–171, doi: 10.1038/nclimate2837.

    Article  Google Scholar 

  • Huang, J. P., M. X. Ji, Y. K. Xie, S. S. Wang, Y. L. He, and J. J. Ran, 2016b: Global semi-arid climate change over last 60 years. Climate Dyn., 46, 1131–1150, doi: 10.1007/s00382-015-2636-8.

    Article  Google Scholar 

  • Huang, N. E., and Z. H. Wu, 2008: A review on Hilbert-Huang transform: Method and its applications to geophysical studies. Rev. Geophys., 46, RG2006, doi: 10.1029/2007RG000228.

    Article  Google Scholar 

  • Hulme, M., R. Marsh, and P. D. Jones, 1992: Global changes in a humidity index between 1931-60 and 1961-90. Climate Research, 2, 1–22, doi: 10.3354/cr002001.

    Article  Google Scholar 

  • Keyantash, J., and J. A. Dracup, 2002: The quantification of drought: An evaluation of drought indices. Bull. Amer. Meteor. Soc., 83, 1167–1180, doi: 10.1175/1520-0477(2002)083<1191:TQODAE>2.3.CO;2.

    Article  Google Scholar 

  • Li, Y., J. P. Huang, M. X. Ji, and J. J. Ran, 2015: Dryland expansion in northern China from 1948 to 2008. Adv. Atmos. Sci., 32, 870–876, doi: 10.1007/s00376-014-4106-3.

    Article  Google Scholar 

  • Lioubimtseva, E., and G. M. Henebry, 2009: Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations. Journal of Arid Environments, 73, 963–977, doi: 10.1016/j.jaridenv.2009.04.022.

    Article  Google Scholar 

  • Liu, B., and Z. G. Ma, 2007: Area change of dry and wet regions in China in the past 45 years. Arid Land Geography, 30, 7–15, doi: 10.3321/j.issn:1000-6060.2007.01.002. (in Chinese with English abstract)

    Google Scholar 

  • Ma, Z. G., and C. B. Fu, 2003: Interannual characteristics of the surface hydrological variables over the arid and semi-arid areas of northern China. Global and Planetary Change, 37, 189–200, doi: 10.1016/S0921-8181(02)00203-5.

    Google Scholar 

  • Ma, Z. G., and C. B. Fu, 2005: Decadal variations of arid and semi-arid boundary in China. Chinese Journal of Geophysics, 48, 519–525, doi: 10.3321/j.issn:0001-5733.2005.03.008. (in Chinese with English abstract)

    Google Scholar 

  • Ma, Z. G., and C. B. Fu, 2006: Some evidence of drying trend over northern China from 1951 to 2004. Chinese Science Bulletin, 51, 2913–2925, doi: 10.1007/s11434-006-2159-0.

    Article  Google Scholar 

  • Ma, Z. G., and C. B. Fu, 2007: Global aridification in the second half of the 20th century and its relationship to large-scale climate background. Science in China Series D: Earth Sciences, 50, 776–788, doi: 10.1007/s11430-007-0036-6.

    Article  Google Scholar 

  • Maidment, R. I., R. P. Allan, and E. Black, 2015: Recent observed and simulated changes in precipitation over Africa. Geophys. Res. Lett., 42, 8155–8164, doi: 10.1002/2015gl065765.

    Article  Google Scholar 

  • McMahon, T. A., B. L. Finlayson, and M. C. Peel, 2016: Historical developments of models for estimating evaporation using standard meteorological data. Wiley Interdisciplinary Reviews: Water, 3, 788–818, doi: 10.1002/wat2.1172.

    Article  Google Scholar 

  • Mishra, A. K., and V. P. Singh, 2010: A review of drought concepts. Journal of Hydrology, 391, 202–216, doi: 10.1016/j.jhydrol.2010.07.012.

    Article  Google Scholar 

  • Palmer, W. C., 1965: Meteorological drought. Research Paper No. 45. U.S. Weather Bureau, Washington, D.C.

    Google Scholar 

  • Qian, C., and T. J. Zhou, 2014: Multidecadal variability of north China aridity and its relationship to PDO during 1900-2010. J. Climate, 27, 1210–1222, doi: 10.1175/JCLI-D-13-00235.1.

    Article  Google Scholar 

  • Rezaei, M., M. Valipour, and M. Valipour, 2016: Modelling evapotranspiration to increase the accuracy of the estimations based on the climatic parameters. Water Conservation Science and Engineering, 1, 197–207, doi: 10.1007/s41101-016-0013-z.

    Article  Google Scholar 

  • Reynolds, J. F., and Coauthors, 2007: Global desertification: Building a science for dryland development. Science, 316, 847–851, doi: 10.1126/science.1131634.

    Article  Google Scholar 

  • Roderick, M. L. and G. D. Farquhar, 2002: The cause of decreased pan evaporation over the past 50 years. Science, 298, 1410–1411.

    Google Scholar 

  • Sheffield, J., E. F. Wood, and M. L. Roderick, 2012: Little change in global drought over the past 60 years. Nature, 491, 435–438, doi: 10.1038/nature11575.

    Article  Google Scholar 

  • Sherwood, S., and Q. Fu, 2014: A drier future? Science, 343, 737–739, doi: 10.1126/science.1247620.

    Article  Google Scholar 

  • Shuttleworth, W. J., and J. S. Wallace, 1985: Evaporation from sparse crops-An energy combination theory. Quart. J. Roy. Meteor. Soc., 111, 839–855, doi: 10.1002/qj.49711146910.

    Article  Google Scholar 

  • Tegos, A., N. Malamos, and D. Koutsoyiannis, 2015: A parsimonious regional parametric evapotranspiration model based on a simplification of the Penman-Monteith formula. J. Hydrol., 524, 708–717, doi: 10.1016/j.jhydrol.2015.03.024.

    Article  Google Scholar 

  • Thornthwaite, C. W., 1948: An approach toward a rational classification of climate. Geographical Review, 38, 55–94, doi: 10.2307/210739.

    Article  Google Scholar 

  • Trenberth, K. E., A. G. Dai, G. van der Schrier, P. D. Jones, J. Barichivich, K. R. Briffa, and J. Sheffield, 2014: Global warming and changes in drought. Nat. Clim. Change, 4, 17–22, doi: 10.1038/nclimate2067.

    Article  Google Scholar 

  • United Nations Environment Programme (UNEP), 1992: World atlas of desertification. Edward Arnold, Sevenoaks, 68pp.

    Google Scholar 

  • Valipour, M., 2013: Use of surface water supply index to assessing of water resources management in Colorado and Oregon, US. Advances in Agriculture, Sciences and Engineering Research, 3, 631–640.

    Google Scholar 

  • Valipour, M., M. A. Gholami Sefidkouhi, and M. Raeini-Sarjaz, 2017: Selecting the best model to estimate potential evapotranspiration with respect to climate change and magnitudes of extreme events. Agricultural Water Management, 180, 50–60, doi: 10.1016/j.agwat.2016.08.025.

    Article  Google Scholar 

  • van der Schrier, G., P. D. Jones, and K. R. Briffa, 2011: The sensitivity of the PDSI to the Thornthwaite and Penman-Monteith parameterizations for potential evapotranspiration. J. Geophys. Res., 116, D03106, doi: 10.1029/2010JD015001.

    Google Scholar 

  • van der Schrier, G., J. Barichivich, K. R. Briffa, and P. D. Jones, 2013: A scPDSI-based global data set of dry and wet spells for 1901-2009. J. Geophys. Res., 118, 4025–4048, doi: 10.1002/jgrd.50355.

    Google Scholar 

  • Vicente-Serrano, S. M., S. Beguería, and J. I. López-Moreno, 2010a: A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Climate, 23, 1696–1718, doi: 10.1175/2009JCLI2909.1.

    Article  Google Scholar 

  • Vicente-Serrano, S. M., S. Beguería, J. I. López-Moreno, M. Angulo, and A. El Kenawy, 2010b: A new global 0.5° gridded dataset (1901–2006) of a multiscalar drought index: Comparison with current drought index datasets based on the palmer drought severity index. Journal of Hydrometeorology, 11, 1033–1043, doi: 10.1175/2010JHM1224.1.

    Article  Google Scholar 

  • Vicente-Serrano, S. M., and Coauthors, 2012: Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interactions, 16, 10, doi: 10.1175/2012EI000434.1.

    Article  Google Scholar 

  • Wilks, D. S., 2005: Statistical Methods in the Atmospheric Sciences (International Geophysics). 2nd ed. Academic Press.

    Google Scholar 

  • Willmott, C. J., C. M. Rowe, and Y. Mintz, 1985: Climatology of the terrestrial seasonal water cycle. J. Climatol., 5, 589–606, doi: 10.1002/joc.3370050602.

    Article  Google Scholar 

  • Wu, Z. H., and N. E. Huang, 2009: Ensemble empirical mode decomposition: A noise-assisted data analysis method. Advances in Adaptive Data Analysis, 1, 1–41, doi: 10.1142/S1793536909000047.

    Article  Google Scholar 

  • Wu, Z. H., N. E. Huang, J. M. Wallace, B. V. Smoliak, and X. Y. Chen, 2011: On the time-varying trend in globalmean surface temperature. Climate Dyn., 37, 759–773, doi: 10.1007/s00382-011-1128-8.

    Article  Google Scholar 

  • Xia, J. J., Z. W. Yan, and P. L. Wu, 2013: Multidecadal variability in local growing season during 1901-2009. Climate Dyn., 41, 295–305, doi: 10.1007/s00382-012-1438-5.

    Article  Google Scholar 

  • Xu, C.-Y., L. B. Gong, T. Jiang, D. L. Chen, and V. P. Singh, 2006: Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. J. Hydrol., 327, 81–93, doi: 10.1016/j.jhydrol.2005.11.029.

    Article  Google Scholar 

  • Yuan, S. S., and S. M. Quiring, 2014: Drought in the U.S. great plains (1980-2012): A sensitivity study using different methods for estimating potential evapotranspiration in the Palmer Drought Severity Index. J. Geophys. Res., 119, 10 996–11 010, doi: 10.1002/2014JD021970.

    Google Scholar 

  • Zhang, J., F. B. Sun, J. J. Xu, Y. N. Chen, Y.-F. Sang, and C. M. Liu, 2016: Dependence of trends in and sensitivity of drought over China (1961-2013) on potential evaporation model. Geophys. Res. Lett., 43, 206–213, doi: 10.1002/2015GL067473.

    Article  Google Scholar 

  • Zhou, M. C., H. Ishidaira, and K. Takeuchi, 2008: Comparative study of potential evapotranspiration and interception evaporation by land cover over Mekong basin. Hydrological Processes, 22, 1290–1309, doi: 10.1002/hyp.6939.

    Article  Google Scholar 

Download references

Acknowledgements

This study was jointly sponsored by the National K&D Program of China (Grant No. 2016YFA0600404), the China Special Fund for Meteorological Research in the Public Interest (Grant No. GYHY201106028 and GYHY201506001-1), the National Natural Science Foundation of China (Grant No. 41530532), and the Jiangsu Collaborative Innovation Center for Climate Change.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Ma, Z., Zheng, Z. et al. Sensitivity of potential evapotranspiration estimation to the Thornthwaite and Penman–Monteith methods in the study of global drylands. Adv. Atmos. Sci. 34, 1381–1394 (2017). https://doi.org/10.1007/s00376-017-6313-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-017-6313-1

Key words

关键词

Navigation