Skip to main content
Log in

Decadal variation of the impact of La Niña on the winter Arctic stratosphere

  • Letter
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The impact of La Niña on the winter Arctic stratosphere has thus far been an ambiguous topic of research. Contradictory results have been reported depending on the La Niña events considered. This study shows that this is mainly due to the decadal variation of La Niña’s impact on the winter Arctic stratosphere since the late 1970s. Specifically, during the period 1951–78, the tropospheric La Niña teleconnection exhibits a typical negative Pacific–North America pattern, which strongly inhibits the propagation of the planetary waves from the extratropical troposphere to the stratosphere, and leads to a significantly strengthened stratospheric polar vortex. In contrast, during 1979–2015, the La Niña teleconnection shifts eastwards, with an anomalous high concentrated in the northeastern Pacific. The destructive interference of the La Niña teleconnection with climatological stationary waves seen in the earlier period reduces greatly, which prevents the drastic reduction of planetary wave activities in the extratropical stratosphere. Correspondingly, the stratospheric response shows a less disturbed stratospheric polar vortex in winter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Aselmann, I., and P. J. Crutzen, 1989: Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. Journal of Atmospheric Chemistry, 8(4), 307–358.

    Article  Google Scholar 

  • Baldocchi, D. D., 2003: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future. Global Change Biology, 9(4), 479–492, doi: 10.1046/j.1365-2486.2003.00629.x.

    Article  Google Scholar 

  • Baldocchi, D., R. Valentini, S. Running, W. Oechel, and R. Dahlman, 1996: Strategies for measuring and modelling carbon dioxide and water vapour fluxes over terrestrial ecosystems. Global Change Biology, 2(3), 159–168, doi: 10.1111/j. 1365-2486.1996.tb00069.x.

    Article  Google Scholar 

  • Baldocchi, D., and Coauthors, 2001: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Amer. Meteor. Soc., 82(11), 2415–2434, doi: 10.1175/1520-0477(2001)082<2415:Fantts>2.3.Co;2.

    Article  Google Scholar 

  • Bintanja, R., 2000: Surface heat budget of Antarctic snow and blue ice: Interpretation of spatial and temporal variability. J. Geophys. Res., 105(D19), 24 387–24 407, doi: 10.1029/2000jd 900356.

    Article  Google Scholar 

  • Bounoua, L., G. J. Collatz, S. O. Los, P. J. Sellers, D. A. Dazlich, C. J. Tucker, and D. A. Randall, 2000: Sensitivity of climate to changes in NDVI. J. Climate, 13(13), 2277–2292, doi: 10.1175/1520-0442(2000)013<2277:Soctci>2.0.Co;2.

    Article  Google Scholar 

  • Bulić, I. H., Č Branković, and F. Kucharski, 2012: Winter ENSO teleconnections in a warmer climate. Climate Dyn., 38, 1593–1613.

    Article  Google Scholar 

  • Butler, A. H., L. M. Polvani, and C. Deser, 2014: Separating the stratospheric and tropospheric pathways of El Niño–Southern Oscillation teleconnections. Environmental Research Letters, 9, 024014, doi: 10.1088/1748-9326/9/2/024014.

    Article  Google Scholar 

  • Charlton, A. J., and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20, 449–469.

    Article  Google Scholar 

  • Deser, C., A. Phillips, V. Bourdette, and H. Y. Teng, 2010: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527–546.

    Article  Google Scholar 

  • Free, M., and D. J. Seidel, 2009: Observed El Niño–southern oscillation temperature signal in the stratosphere. J. Geophys. Res., 114(D23), D23108, doi: 10.1029/2009JD012420.

    Article  Google Scholar 

  • Garfinkel, C. I., and D. L. Hartmann, 2007: Effects of the El Nino–southern oscillation and the quasi-biennial oscillation on polar temperatures in the stratosphere. J. Geophys. Res., 112(D19), D19112, doi: 10.1029/2007JD008481.

    Article  Google Scholar 

  • Garfinkel, C. I., and D. L. Hartmann, 2008: Different ENSO teleconnections and their effects on the stratospheric polar vortex. J. Geophys. Res., 113(D18), D18114, doi: 10.1029/2008 JD009920.

    Article  Google Scholar 

  • Garfinkel, C. I., D. L. Hartmann, and F. Sassi, 2010: Tropospheric precursors of anomalous Northern Hemisphere stratospheric polar vortices. J. Climate, 23, 3282–3299.

    Article  Google Scholar 

  • Holton, J. R., and H. C. Tan, 1980: The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J. Atmos. Sci., 37, 2200–2208.

    Article  Google Scholar 

  • Hu, D. Z., W. S. Tian, F. Xie, J. C. Shu, and S. Dhomse, 2014a: Effects of meridional sea surface temperature changes on stratospheric temperature and circulation. Adv. Atmos. Sci., 31, 888–900, doi: 10.1007/s00376-013-3152-6.

    Article  Google Scholar 

  • Hu, J. G., R. C. Ren, and H. M. Xu, 2014b: Occurrence of winter stratospheric sudden warming events and the seasonal timing of spring stratospheric final warming. J. Atmos. Sci., 71, 2319–2334.

    Article  Google Scholar 

  • Hu, J. G., R. C. Ren., H. M. Xu, and S. Y. Yang, 2015: Seasonal timing of stratospheric final warming associated with the intensity of stratospheric sudden warming in preceding winter. Science China Earth Sciences, 58, 615–627.

    Article  Google Scholar 

  • Hu, J. G., T. Li, H. M. Xu, S. Y. Yang, 2016: Lessened response of boreal winter stratospheric polar vortex to El Niño in recent decades. Climate Dyn. doi: 10.1007/s00382-016-3340-z.

    Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.

    Article  Google Scholar 

  • Kim, B. M., and Coauthors, 2014: Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat. Commun., 5, 4646, doi: 10.1038/ncomms5646.

    Article  Google Scholar 

  • King, M. P., M. Hell, and N. Keenlyside, 2016: Investigation of the atmospheric mechanisms related to the autumn sea ice and winter circulation link in the Northern Hemisphere. Climate Dyn., 46, 1185–1195.

    Article  Google Scholar 

  • Kren, A. C., D. R. Marsh, A. K. Smith, and P. Pilewskie, 2016: Wintertime Northern Hemisphere response in the stratosphere to the Pacific decadal oscillation using the whole atmosphere community climate model. J. Climate, 29, 1031–1049.

    Article  Google Scholar 

  • Manzini, E., M. A. Giorgetta, M. Esch, L. Kornblueh, and E. Roeckner, 2006: The influence of sea surface temperatures on the northern winter stratosphere: Ensemble simulations with the MAECHAM5 model. J. Climate, 19, 3863–3881.

    Article  Google Scholar 

  • Meehl, G. A., and H. Y. Teng, 2007: Multi-model changes in El Niño teleconnections over North America in a future warmer climate. Climate Dyn., 29, 779–790.

    Article  Google Scholar 

  • Müller, W. A., and E. Roeckner, 2008: ENSO teleconnections in projections of future climate in ECHAM5/MPI-OM. Climate Dyn., 31, 533–549.

    Article  Google Scholar 

  • Nakamura, T., K. Yamazaki, K. Iwamoto, M. Honda, Y. Miyoshi, Y. Ogawa, Y. Tomikawa, and J. Ukita, 2016: The stratospheric pathway for Arctic impacts on midlatitude climate. Geophys. Res. Lett., 43, 3494–3501.

    Article  Google Scholar 

  • Rao, J., and R. C. Ren, 2016: A decomposition of ENSO’s impacts on the northern winter stratosphere: Competing effect of SST forcing in the tropical Indian Ocean. Climate Dyn., 46, 3689–3707.

    Article  Google Scholar 

  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108(D14), 4407, doi: 10.1029/2002JD 002670.

    Article  Google Scholar 

  • Ren, R. C., M. Cai, C. Y. Xiang, and G. X. Wu, 2012: Observational evidence of the delayed response of stratospheric polar vortex variability to ENSO SST anomalies. Climate Dyn., 38, 1345–1358.

    Article  Google Scholar 

  • Sassi, F., D. Kinnison, B. A. Boville, R. R. Garcia, and R. Roble, 2004: Effect of El Niño–southern oscillation on the dynamical, thermal, and chemical structure of the middle atmosphere. J. Geophys. Res., 109(D17), D17108, doi: 10.1029/ 2003JD004434.

    Article  Google Scholar 

  • Wei, K., W. Chen, and R. H. Huang, 2007: Association of tropical Pacific sea surface temperatures with the stratospheric Holton-Tan Oscillation in the Northern Hemisphere winter. Geophys. Res. Lett., 34, L16814, doi: 10.1029/2007GL 030478.

    Google Scholar 

  • Wittenberg, A. T., 2009: Are historical records sufficient to constrain ENSO simulations?. Geophys. Res. Lett., 36, L12702, doi: 10.1029/2009GL038710.

    Article  Google Scholar 

  • Woo, S. H., M. K. Sung, S. W. Son, and J. S. Kug, 2015: Connection between weak stratospheric vortex events and the Pacific Decadal Oscillation. Climate Dyn., 45, 3481–3492.

    Article  Google Scholar 

  • Xie, F., J. Li, W. Tian, J. Feng, and Y. Huo, 2012: Signals of El Niño Modoki in the tropical tropopause layer and stratosphere. Atmospheric Chemistry and Physics, 12, 5259–5273.

    Article  Google Scholar 

  • Xie F, J. P. Li, W. S. Tian, J. K. Zhang, and J. C. Shu, 2014: The impacts of two types of El Niño on global ozone variations in the last three decades. Adv. Atmos. Sci., 31, 1113–1126, doi: 10.1007/s00376-013-3166-0.

    Article  Google Scholar 

  • Zhou, Z. Q., S. P. Xie, X. T. Zheng, Q. Liu, and H. Wang, 2014: Global warming–induced changes in El Niño teleconnections over the North Pacific and North America. J. Climate., 27, 9050–9064.

    Article  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by an NSFC project (Grant Nos. 41505034, 41630423), the China National 973 project (Grant No. 2015CB453200), NSF (AGS- 1565653), NSFC project (Grant No. 41475084), NRL (Grant No. N00173-161G906), Jiangsu NSF key project (Grant No. BK20150062), the Startup Foundation for Introducing Talent of NUIST (Grant No. 2014R010), a project funded by the Jiangsu Shuang-Chuang Team (Grant No. R2014SCT001), the Startup Foundation for Introducing Talent of NUIST (Grant No. 2014R010), and the Priority Academic Program Development of Jiangsu Higher Education Institutions. Jinggao Hu thanks the China Scholarship Council for funding and travel support. This paper is SOEST contribution number 9890, IPRC contribution number 1233, and ESMC contribution number 144.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinggao Hu.

Additional information

Electronic supplementary material: Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00376-016-6184-x.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Li, T., Hu, J. et al. Decadal variation of the impact of La Niña on the winter Arctic stratosphere. Adv. Atmos. Sci. 34, 679–684 (2017). https://doi.org/10.1007/s00376-016-6184-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-016-6184-x

Key words

Navigation