Skip to main content
Log in

Global land surface climate analysis based on the calculation of a modified Bowen ratio

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

A modified Bowen ratio (BRm), the sign of which is determined by the direction of the surface sensible heat flux, was used to represent the major divisions in climate across the globe, and the usefulness of this approach was evaluated. Five reanalysis datasets and the results of an offline land surface model were investigated. We divided the global continents into five major BRm zones using the climatological means of the sensible and latent heat fluxes during the period 1980–2010: extremely cold, extremely wet, semi-wet, semi-arid and extremely arid. These zones had BRm ranges of (−∞, 0), (0, 0.5), (0.5, 2), (2, 10) and (10, +∞), respectively. The climatological mean distribution of the Bowen ratio zones corresponded well with the K¨oppen-like climate classification, and it reflected well the seasonal variation for each subdivision of climate classification. The features of climate change over the mean climatological BRm zones were also investigated. In addition to giving a map-like classification of climate, the BRm also reflects temporal variations in different climatic zones based on land surface processes. An investigation of the coverage of the BRm zones showed that the extremely wet and extremely arid regions expanded, whereas a reduction in area was seen for the semi-wet and semi-arid regions in boreal spring during the period 1980–2010. This indicates that the arid regions may have become drier and the wet regions wetter over this period of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bowen, I. S., 1926: The ratio of heat losses by conduction and by evaporation from any water surface. Phys. Rev., 27(6), 779–787, doi: 10.1103/PhysRev.27.779.

    Article  Google Scholar 

  • Bradley, R. S., H. F. Diaz, G. N. Kiladis, and J. K. Eischeid, 1987: Enso signal in continental temperature and precipitation records. Nature, 327(6122), 497–501, doi: 10.1038/ 327497a0.

    Article  Google Scholar 

  • Budyko, M. I., 1961: The heat balance of the earth’s surface. Soviet Geography, 2(4), 3–13.

    Article  Google Scholar 

  • Chen, M. Y., P. P. Xie, J. E. Janowiak, and P. A. Arkin, 2002: Global land precipitation: A 50-yr monthly analysis based on gauge observations. Journal of Hydrometeorology, 3(3), 249–266, doi: 10.1175/1525-7541(2002)003<0249:Glpaym>2.0. Co;2.

    Article  Google Scholar 

  • Compo, G. P., and Coauthors, 2011: The twentieth century reanalysis project. Quart. J. Roy. Meteor. Soc., 137(654), 1–28, doi: 10.1002/Qj.776.

    Article  Google Scholar 

  • Condit, R., S. P. Hubbell, and R. B. Foster, 1996: Assessing the response of plant functional types to climatic change in tropical forests. Journal of Vegetation Science, 7(3), 405–416, doi: 10.2307/3236284.

    Article  Google Scholar 

  • Dabberdt, W. F., D. H. Lenschow, T. W. Horst, P. R. Zimmerman, S. P. Oncley, and A. C. Delany, 1993: Atmosphere-surface exchange measurements. Science, 260(5113), 1472–1481, doi: 10.1126/science.260.5113.1472.

    Article  Google Scholar 

  • Dai, A. G., 2011: Drought under global warming: A review. Wires Climate Change, 2(1), 45–65, doi: 10.1002/wcc.81.

    Article  Google Scholar 

  • Dai, A. G., and T. M. L. Wigley, 2000: Global patterns of ENSOinduced precipitation. Geophys. Res. Lett., 27(9), 1283–1286, doi: 10.1029/1999gl011140.

    Article  Google Scholar 

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137(656), 553–597, doi: 10.1002/Qj.828.

    Article  Google Scholar 

  • Defries, R. S., and J. R. G. Townshend, 1994: Ndvi-derived land cover classifications at a global scale. Int. J. Remote Sens., 15(17), 3567–3586.

    Article  Google Scholar 

  • den Hartog, G., H. H. Neumann, K. M. King, and A. C. Chipanshi, 1994: Energy budget measurements using eddy correlation and Bowen ratio techniques at the Kinosheo lake tower site during the northern wetlands study. J. Geophys. Res., 99(D1), 1539–1549, doi: 10.1029/93jd00032.

    Article  Google Scholar 

  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108(D22), doi: 10.1029/2002JD003296.

    Google Scholar 

  • Elguindi, N., A. Grundstein, S. Bernardes, U. Turuncoglu, and J. Feddema, 2014: Assessment of CMIP5 global model simulations and climate change projections for the 21st century using a modified Thornthwaite climate classification. Climatic Change, 122(4), 523–538, doi: 10.1007/s10584-013-1020-0.

    Article  Google Scholar 

  • Feng, S., C.-H. Ho, Q. Hu, R. J. Oglesby, S.-J. Jeong, and B.-M. Kim, 2012: Evaluating observed and projected future climate changes for the Arctic using the Köppen-Trewartha climate classification. Climate Dyn., 38(7–8), 1359–1373, doi: 10.1007/s00382-011-1020-6.

    Article  Google Scholar 

  • Fensholt, R., and Coauthors, 2012: Greenness in semi-arid areas across the globe 1981–2007—An Earth Observing Satellite based analysis of trends and drivers. Remote Sensing of Environment, 121, 144–158, doi: 10.1016/j.rse.2012.01.017.

    Article  Google Scholar 

  • Fisher, J. B., K. P. Tu, and D. D. Baldocchi, 2008: Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sensing of Environment, 112(3), 901–919, doi: 10.1016/j.rse. 2007.06.025.

    Article  Google Scholar 

  • Gallardo, C., V. Gil, E. Hagel, C. Tejeda, and M. de Castro, 2013: Assessment of climate change in Europe from an ensemble of regional climate models by the use of Köppen-Trewartha classification. International Journal of Climatology, 33(9), 2157–2166, doi: 10.1002/joc.3580.

    Article  Google Scholar 

  • Gan, M. A., V. E. Kousky, and C. F. Ropelewski, 2004: The South America monsoon circulation and its relationship to rainfall over west-central Brazil. J. Climate, 17(1), 47–66, doi: 10.1175/1520-0442(2004)017<0047:Tsamca>2.0.Co;2.

    Article  Google Scholar 

  • Giorgi, F., and Coauthors, 2001: Emerging patterns of simulated regional climatic changes for the 21st century due to anthropogenic forcings. Geophys. Res. Lett., 28(17), 3317–3320, doi: 10.1029/2001gl013150.

    Article  Google Scholar 

  • Golluscio, R. A., and O. E. Sala, 1993: Plant functional types and ecological strategies in Patagonian forbs. Journal of Vegetation Science, 4(6), 839–846, doi: 10.2307/3235623.

    Article  Google Scholar 

  • Holmgren, M., and Coauthors, 2006: Extreme climatic events shape arid and semiarid ecosystems. Frontiers in Ecology and the Environment, 4(2), 87–95, doi: 10.1890/1540-9295(2006) 004[0087: Ecesaa]2.0.Co;2.

    Article  Google Scholar 

  • Huang, J., X. Guan, and F. Ji, 2012: Enhanced cold-season warming in semi-arid regions. Atmospheric Chemistry and Physics, 12(12), 5391–5398, doi: 10.5194/acp-12-5391-2012.

    Article  Google Scholar 

  • Huete, A. R., and Coauthors, 2006: Amazon rainforests greenup with sunlight in dry season. Geophys. Res. Lett., 33(6), L06405, doi: 10.1029/2005gl025583.

    Article  Google Scholar 

  • Inman-Bamber, N. G., and M. G. McGlinchey, 2003: Crop coefficients and water-use estimates for sugarcane based on long-term Bowen ratio energy balance measurements. Field Crops Research, 83(2), 125–138, doi: 10.1016/S0378-4290(03) 00069-8.

    Article  Google Scholar 

  • Jacobs, A. F. G., B. G. Heusinkveld, and S. M. Berkowicz, 2008: Passive dew collection in a grassland area, The Netherlands. Atmospheric Research, 87(3–4), 377–385, doi: 10.1016/j. atmosres.2007.06.007.

    Article  Google Scholar 

  • Jones, P. D., M. New, D. E. Parker, S. Martin, and I. G. Rigor, 1999: Surface air temperature and its changes over the past 150 years. Rev. Geophys., 37(2), 173–199, doi: 10.1029/1999 rg900002.

    Article  Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77(3), 437–471, doi: 10.1175/1520-0477(1996)077<0437:Tnyrp>2.0.Co;2.

    Article  Google Scholar 

  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP-DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83(11), 1631–1643, doi: 10.1175/Bams-83-11-1631.

    Article  Google Scholar 

  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93(1), 5–48, doi: 10.2151/jmsj.2015-001.

    Article  Google Scholar 

  • Koöppen, W. P., 1931: Grundriss der Klimakunde. Walter de Gruyter, Berlin.

    Google Scholar 

  • Kottek, M., J. Grieser, C. Beck, B. Rudolf, and F. Rubel, 2006: World map of the Köppen-Geiger climate classification updated. Meteor. Z., 15(3), 259–263, doi: 10.1127/0941-2948/2006/0130.

    Article  Google Scholar 

  • Krishnan, P., T. P. Meyers, R. L. Scott, L. Kennedy, and M. Heuer, 2012: Energy exchange and evapotranspiration over two temperate semi-arid grasslands in North America. Agricultural and Forest Meteorology, 153, 31–44, doi: 10.1016/j. agrformet.2011.09.017.

    Article  Google Scholar 

  • Lewis, J. M., 1995: The story behind the Bowen ratio. Bull. Amer. Meteor. Soc., 76(12), 2433–2443, doi: 10.1175/1520-0477 (1995)076<2433:Tsbtbr>2.0.Co;2.

    Article  Google Scholar 

  • Luthcke, S. B., and Coauthors, 2006: Recent Greenland ice mass loss by drainage system from satellite gravity observations. Science, 314(5803), 1286–1289, doi: 10.1126/ science.1130776.

    Article  Google Scholar 

  • Ma, Z. G., and C. B. Fu, 2007: Global aridification in the second half of the 20th century and its relationship to large-scale climate background. Science in China Series D: Earth Sciences, 50(5), 776–788, doi: 10.1007/s11430-007-0036-6.

    Article  Google Scholar 

  • Menon, S., J. Soberón, X. G. Li, and A. T. Peterson, 2010: Preliminary global assessment of terrestrial biodiversity consequences of sea-level rise mediated by climate change. Biodiversity and Conservation, 19(6), 1599–1609, doi: 10.1007/ s10531-010-9790-4.

    Article  Google Scholar 

  • Middleton, N., and D. Thomas, 1997: World Atlas of Desertification. 2nd ed. Arnold, London.

    Google Scholar 

  • Navarro, T., C. L. Alados, and B. Cabezudo, 2006: Changes in plant functional types in response to goat and sheep grazing in two semi-arid shrublands of SE Spain. Journal of Arid Environments, 64(2), 298–322, doi: 10.1016/j.jaridenv.2005. 05.005.

    Article  Google Scholar 

  • Nicholson, S. E., 2001: Climatic and environmental change in Africa during the last two centuries. Climate Research, 17(2), 123–144, doi: 10.3354/cr017123.

    Article  Google Scholar 

  • Nicolas, J. P., and D. H. Bromwich, 2014: New reconstruction of Antarctic near-surface temperatures: Multidecadal trends and reliability of global reanalyses. J. Climate, 27, 8070–8093.

    Article  Google Scholar 

  • Olson, D. M., and Coauthors, 2001: Terrestrial ecoregions of the world: A new map of life on Earth. BioScience, 51(11), 933–938, doi: 10.1641/0006-3568(2001)051[0933:Teotwa]2.0.Co; 2.

    Article  Google Scholar 

  • Paltineanu, C., E. Chitu, and E. Mateescu, 2011: Changes in crop evapotranspiration and irrigation water requirements. International Agrophysics, 25(4), 369–373.

    Google Scholar 

  • Pan, H.-L., and L. Mahrt, 1987: Interaction between soil hydrology and boundary-layer development. Bound.-Layer Meteor., 38, 185–202.

    Article  Google Scholar 

  • Pearch, M. J., 2011: A review of the biological diversity and distribution of small mammal taxa in the terrestrial ecoregions and protected areas of Nepal. Zootaxa, 3072, 1–286.

    Google Scholar 

  • Peel, M. C., B. L. Finlayson, and T. A. McMahon, 2007: Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11(5), 1633–1644.

    Article  Google Scholar 

  • Pitacco, A., N. Gallinaro, and C. Giulivo, 1992: Evaluation of actual evapotranspiration of a Quercus ilex L. stand by the Bowen ratio-energy budget method. Vegetation, 99, 163–168.

    Article  Google Scholar 

  • Poulter, B., and Coauthors, 2014: Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature, 509(7502), 600–603, doi: 10.1038/Nature13376.

    Article  Google Scholar 

  • Ragab, R., and C. Prudhomme, 2002: SW-Soil andWater: Climate change and water resources management in arid and semiarid regions: Prospective and challenges for the 21st century. Biosystems Engineering, 81(1), 3–34, doi: 10.1006/bioe. 2001.0013.

    Article  Google Scholar 

  • Rodell, M., and Coauthors, 2004: The global land data assimilation system. Bull. Amer. Meteor. Soc., 85, 381–394.

    Article  Google Scholar 

  • Rusch, G. M., J. G. Pausas, and J. Lepš, 2003: Plant Functional Types in relation to disturbance and land use: Introduction. Journal of Vegetation Science, 14(3), 307–310, doi: 10.1111/ j.1654-1103.2003.tb02156.x.

    Article  Google Scholar 

  • Sellers, P. J., Y. Mintz, Y. C. Sud, and A. Dalcher, 1986: A simple biosphere model (SiB) for use within general circulation models. J. Atmos. Sci., 43, 505–531.

    Article  Google Scholar 

  • Small, E. E., F. Giorgi, and L. C. Sloan, 1999: Regional climate model simulation of precipitation in central Asia: Mean and interannual variability. J. Geophys. Res., 104(D6), 6563–6582, doi: 10.1029/98jd02501.

    Article  Google Scholar 

  • Smith, T. M., H. H. Shugart, F. I. Woodward, and P. J. Burton, 1993: Plant functional types. Vegetation Dynamics & Global Change, S.M. Solomon and H. H. Shugart, Eds., Chapman & Hall, New York, 272–292.

    Chapter  Google Scholar 

  • Sun, W. Y., X. Y. Song, X. M. Mu, P. Gao, F. Wang, and G. J. Zhao, 2015: Spatiotemporal vegetation cover variations associated with climate change and ecological restoration in the Loess Plateau. Agricultural and Forest Meteorology, 209–210, 87–99, doi: 10.1016/j.agrformet.2015.05.002.

    Article  Google Scholar 

  • Tang, L., and F. Hossain, 2012: Investigating the similarity of satellite rainfall error metrics as a function of Köppen climate classification. Atmospheric Research, 104–105, 182–192, doi: 10.1016/j.atmosres.2011.10.006.

    Article  Google Scholar 

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93(4), 485–498, doi: 10.1175/Bams-D-11-00094.1.

    Article  Google Scholar 

  • Toda, M., K. Nishida, N. Ohte, M. Tani, and K. Musiake, 2002: Observations of energy fluxes and evapotranspiration over terrestrial complex land covers in the tropical monsoon environment. J. Meteor. Soc. Japan, 80(3), 465–484, doi: 10.2151/ Jmsj.80.465.

    Article  Google Scholar 

  • Todd, R. W., S. R. Evett, and T. A. Howell, 2000: The Bowen ratio-energy balance method for estimating latent heat flux of irrigated alfalfa evaluated in a semi-arid, advective environment. Agricultural and Forest Meteorology, 103(4), 335–348, doi: 10.1016/S0168-1923(00)00139-8.

    Article  Google Scholar 

  • Trewartha, G., and L. Horn, 1980: Köppen’s classification of climates. An Introduction to Climate, McGraw-Hill, New York, 397–403.

    Google Scholar 

  • Trewartha, G. T., and R. D. Sale, 1968: An Introduction to Climate. McGraw-Hill, New York.

    Google Scholar 

  • Turner, J., and Coauthors, 2005: Antarctic climate change during the last 50 years. International Journal of Climatology, 25(3), 279–294, doi: 10.1002/joc.1130.

    Article  Google Scholar 

  • Ustin, S. L., and J. A. Gamon, 2010: Remote sensing of plant functional types. New Phytologist, 186(4), 795–816, doi: 10.1111/ j.1469-8137.2010.03284.x.

    Article  Google Scholar 

  • Viterbo, P., and A. C. M. Beljaars, 1995: An improved land surface parameterization scheme in the ECMWF model and its validation. J. Climate, 8, 2716–2748.

    Article  Google Scholar 

  • Walker, D. A., and Coauthors, 2003: Phytomass, LAI, and NDVI in northern Alaska: Relationships to summer warmth, soil pH, plant functional types, and extrapolation to the circumpolar Arctic. J. Geophys. Res., 108(D2), 8169, doi: 10.1029/ 2001jd000986.

    Article  Google Scholar 

  • Wallace, J. M., Q. Fu, B. V. Smoliak, P. Lin, and C. M. Johanson, 2012: Simulated versus observed patterns of warming over the extratropical Northern Hemisphere continents during the cold season. Proceedings of the National Academy of Sciences of the United States of America, 109(36), 14 337–14 342, doi: 10.1073/pnas.1204875109.

    Article  Google Scholar 

  • Wang, C.-Y., C.-F. Luo, S.-H. Qi, and Z. Niu, 2005: A method of land cover classification for China based on NDVI-Ts space. Journal of Remote Sensing, 9, 93–99. (in Chinese with English abstract)

    Google Scholar 

  • Warry, N. D., and M. Hanau, 1993: The use of terrestrial ecoregions as a regional-scale screen for selecting representative reference sites for water quality monitoring. Environmental Management, 17(2), 267–276, doi: 10.1007/Bf02394696.

    Article  Google Scholar 

  • Wilson, K., and Coauthors, 2002: Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology, 113(1–4), 223–243, doi: 10.1016/S0168-1923(02)00109-0.

    Article  Google Scholar 

  • Woodward, F. I., and W. Cramer, 1996: Plant functional types and climatic change: Introduction. Journal of Vegetation Science, 7(3), 306–308.

    Article  Google Scholar 

  • Yu, L. S., X. Z. Jin, and R. A. Weller, 2008: Multidecade global flux datasets from the objectively analyzed air-sea fluxes (OAFlux) project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. OAFlux Project Technical Report (OA-2008-01), Woods Hole Oceanographic Institution.

    Google Scholar 

  • Zhang, Q. F., G. X. Liu, and Y. H. Bao, 2014: Review of drought monitoring indicators. Sixth Annual Meeting of Information Technology for Risk Analysis and Crisis Response Committee, 23 August 2014, Inner Mongolia, China, 117–122. (in Chinese)

    Google Scholar 

  • Zhou, J. Y., and K. M. Lau, 1998: Does a monsoon climate exist over South America. J. Climate, 11(5), 1020–1040, doi: 10.1175/1520-0442(1998)011<1020:Damceo>2.0.Co;2.

    Article  Google Scholar 

  • Zhou, L., R. K. Kaufmann, Y. Tian, R. B. Myneni, and C. J. Tucker, 2003: Relation between interannual variations in satellite measures of northern forest greenness and climate between 1982 and 1999. J. Geophys. Res., 108(D1), ACL 3-1–ACL 3–16, doi: 10.1029/2002jd002510.

    Article  Google Scholar 

Download references

Acknowledgements

We are extremely grateful to the two anonymous reviewers for their constructive suggestions and comments. This research was jointly funded by the Research Project for PublicWelfare Industry (Meteorology) from the Ministry of Science and Technology in China (Grant No. GYHY201506001), the National Natural Science Foundation of China (Grant Nos. 91537214, 41675015, 41405079 and 41405020), and the Opening Research Foundation of the Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions (Grant No. LPCC201504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, B., Lü, S., Li, R. et al. Global land surface climate analysis based on the calculation of a modified Bowen ratio. Adv. Atmos. Sci. 34, 663–678 (2017). https://doi.org/10.1007/s00376-016-6175-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-016-6175-y

Key words

Navigation