Skip to main content
Log in

Impact of drought on agriculture in the Indo-Gangetic Plain, India

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

In this study, we investigate the spatiotemporal characteristics of drought in India and its impact on agriculture during the summer season (April–September). In the analysis, we use Standardized Precipitation Evapotranspiration Index (SPEI) datasets between 1982 and 2012 at the six-monthly timescale. Based on the criterion SPEI < −1, we obtain a map of the number of occurrences of drought and find that the humid subtropical Upper Middle Gangetic Plain (UMGP) region is highly drought-prone, with an occurrence frequency of 40%–45%. This UMGP region contributes at least 18%–20% of India’s annual cereal production. Not only the probability of drought, but the UMGP region has become increasingly drought-prone in recent decades. Moreover, cereal production in the UMGP region has experienced a gradual declining trend from 2000 onwards, which is consistent with the increase in drought-affected areas from 20%–25% to 50%–60%, before and after 2000, respectively. A higher correlation coefficient (−0.69) between the cereal production changes and drought-affected areas confirms that at least 50% of the agricultural (cereal) losses are associated with drought. While analyzing the individual impact of precipitation and surface temperature on SPEI at 6 month timescale [SPEI (6)] we find that, in the UMGP region, surface temperature plays the primary role in the lowering of the SPEI. The linkage is further confirmed by correlation analysis between SPEI (6) and surface temperature, which exhibits strong negative values in the UMGP region. Higher temperatures may have caused more evaporation and drying, which therefore increased the area affected by drought in recent decades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abramowitz, M., and I. A. Stegun, 1965: Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables. Dover Publications, 1046 pp.

    Google Scholar 

  • Aggarwal, P. K., P. K. Joshi, J. S. I. Ingram, and R. K. Gupta, 2004: Adapting food systems of the Indo-Gangetic plains to global environmental change: key information needs to improve policy formulation. Environmental Science & Policy, 7(6), 487–498.

    Article  Google Scholar 

  • Beguería, S., S. M. Vicente-Serrano, and M. Angulo-Martínez, 2010: A multiscalar global drought dataset: The SPEIbase: A new gridded product for the analysis of drought variability and impacts. Bull. Amer. Meteor. Soc., 91, 1351–1356.

    Article  Google Scholar 

  • Bhalme, H. N., and D. A. Mooley, 1980: Large-scale droughts/floods and monsoon circulation. Mon. Wea. Rev., 108, 1197–1211.

    Article  Google Scholar 

  • Chowdhury, A., M. M. Dandekar, and P. S. Raut, 1989: Variability in drought incidence over India—a statistical approach. Mausam, 40, 207–214.

    Google Scholar 

  • Ciais, P. H., and Coauthors, 2005: Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437, 529–533.

    Article  Google Scholar 

  • Dai, A. G., 2011: Drought under global warming: a review. Wiley Interdisciplinary Reviews: Climate Change, 2(1), 45–65.

    Google Scholar 

  • Dai, A. G., K. E. Trenberth, and T. R. Karl, 1998: Global Variations in droughts and wet spells: 1900–1995. Geophys. Res. Lett., 25, 3367–3370.

    Article  Google Scholar 

  • Eriyagama, N., V. Smakhtin, and N. Gamage, 2009: Mapping drought patterns and impacts: a global perspective. International Water Management Institute (IWMI) 23p.

    Google Scholar 

  • Fischer, E. M., S. I. Seneviratne, P. L. Vidale, D. Lüthi, and C. Schär, 2007: Soil moisture-atmosphere interactions during the 2003 European summer heat wave. J. Climate, 20, 5081–5099.

    Article  Google Scholar 

  • Francis, P. A., and S. Gadgil, 2010: Towards understanding the unusual Indian monsoon in 2009. Journal of Earth System Science, 119, 397–415.

    Article  Google Scholar 

  • Gadgil, S., and S. Gadgil, 2006: The Indian monsoon, GDP and agriculture. Economic and Political Weekly, 4887–4895.

    Google Scholar 

  • Gadgil, S., P. N. Vinayachandran, and P. A. Francis, 2003: Droughts of the Indian summer monsoon: Role of clouds over the Indian Ocean. Current Science, 85, 1713–1719.

    Google Scholar 

  • Guhathakurta, P., 2003: Drought in districts of India during the recent all India normal monsoon years and its probability of occurrence. Mausam, 54, 542–545.

    Google Scholar 

  • Heim, R. R., 2002: A review of twentieth-century drought indices used in the United States. Bull. Amer. Meteor. Soc., 83, 1149–1165.

    Article  Google Scholar 

  • Kishore, P., S. Jyothi, G. Basha, S. V. B. Rao, M. Rajeevan, I. Velicogna, and T. C. Sutterley, 2016: Precipitation climatology over India: Validation with observations and reanalysis datasets and spatial trends. Climate Dyn., 46(1–2), 541–556.

    Article  Google Scholar 

  • Krishnamurti, T. N., H. S. Bedi, and M. Subramaniam, 1989: The summer monsoon of 1987. J. Climate, 2, 321–340.

    Article  Google Scholar 

  • Krishnamurti, T. N., A. Thomas, A. Simon, and V. Kumar, 2010: Desert air incursions, an overlooked aspect, for the dry spells of the Indian summer monsoon. J. Atmos. Sci., 67, 3423–3441.

    Article  Google Scholar 

  • Kumar, K. N., M. Rajeevan, D. S. Pai, A. K. Srivastava, and B. Preethi, 2013: On the observed variability of monsoon droughts over India. Weather and Climate Extremes, 1, 42–50.

    Article  Google Scholar 

  • Kumar, P., and S. Mittal, 2006: Agricultural productivity trends in India: Sustainability issues. Agricultural Economics Research Review, 19, 71–88.

    Google Scholar 

  • Lloyd-Hughes, L. H., and M. A. Saunders, 2002: A drought climatology for Europe. International Journal of Climatology, 22, 1571–1592.

    Article  Google Scholar 

  • McKee, T. B., N. J. Doesken, and J. Kliest, 1993: The relationship of drought frequency and duration to time scales. Proceedings of the 8th Conference on Applied Climatology, 17–22 January, Anaheim, CA, American Meteorological Society, 179–184.

    Google Scholar 

  • Mooley, D. A., B. Parthasarathy, and A. A. Munot, 1984: Large-scale droughts over India and their impact on agricultural production. Mausam, 35, 265.

    Google Scholar 

  • Shewale, M. P., and S. Kumar, 2005: Climatological features of drought incidences in India. Meteorological Monograph, Climatology No. 21/2005, Indian Meteorological Department, 22 pp.

    Google Scholar 

  • Neena, J. M., E. Suhas, and B. N. Goswami, 2011: Leading role of internal dynamics in the 2009 Indian summer monsoon drought. J. Geophys. Res., 116, D13103.

    Article  Google Scholar 

  • New, M., M. Rahiz, and J. Karmacharya, 2012: Climate change in Indo-Gangetic agriculture: Recent trends, current projections, crop-climate suitability, and prospects for improved climate model information. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen, Denmark.

    Google Scholar 

  • Pai, D. S., L. Sridhar, P. Guhathakurta, and H. R. Hatwar, 2011: District-wide drought climatology of the southwest monsoon season over India based on standardized precipitation index (SPI). Natural Hazards, 59, 1797–1813, doi: 10.1007/s11069-011-9867-8.

    Article  Google Scholar 

  • Pathak, H., and Coauthors, 2003: Trends of climatic potential and on-farm yields of rice and wheat in the Indo-Gangetic plains. Field Crops Research, 80, 223–234.

    Article  Google Scholar 

  • Parthasarathy, B., N. A. Sontakke, A. A. Monot, and D. R. Kothawale, 1987: Droughts/floods in the summer monsoon season over different meteorological subdivisions of India for the period 1871–1984. J. Climatol., 7(1), 57–70.

    Article  Google Scholar 

  • Potop, V., C. Boroneanţ M. Možný, P. Štěpánek, and P. Skalák, 2014: Observed spatiotemporal characteristics of drought on various time scales over the Czech Republic. Theor. Appl. Climatol., 115, 563–581, doi: 10.1007/s00704-013-0908-y.

    Article  Google Scholar 

  • Raman, C. R. V., and Y. P. Rao, 1981: Blocking highs over Asia and monsoon droughts over India. Nature, 289, 271–273.

    Article  Google Scholar 

  • Scaini, A., N. Sánchez, S. M. Vincent-Serrano, and J. Martínez-Fernández, 2015: SMOS-derived soil moisture anomalies and drought indices: A comparative analysis using in situ measurements. Hydrological Processes, 29(3), 373–383, doi: 10.1002/hyp.10150.

    Article  Google Scholar 

  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, B. Rudolf, and M. Ziese, 2011: GPCC full data reanalysis version 6.0 at 2.5°: Monthly land-surface precipitation from rain-gauges built on GTS-based and historic data. doi: 10.5676/DWD_GPCC/FD_M_V6_250.

    Google Scholar 

  • Sikka, D. R., 1999: Monsoon drought in India. Joint COLA/CARE Tech. Report No. 2, COLA, MD, USA, 270.

    Google Scholar 

  • Sikka, D. R., 2003: Evaluation of monitoring and forecasting of summer monsoon over India and a review of monsoon drought of 2002. Proceedings of the National Academy of Sciences, India, Section, A69, 479–504.

    Google Scholar 

  • Singh, A., V. S. Phadke, and A. Patwardhan, 2011: Impact of drought and flood on Indian food grain production. Challenges and Opportunities in Agrometeorology, S. D. Attri, L. S. Rathore, M. V. K. Sivakumar, and S. K. Dash, Eds., Springer-Verlag, 421–433, doi: 10.1007/978-3-642-19360-6_32.

    Chapter  Google Scholar 

  • Sinha Ray, K. C., and M. P. Shewale, 2001: Probability of occurrence of drought in various subdivisions of India. Mausam, 52, 541–546.

    Google Scholar 

  • Srivastava, M., S. D. Sharma, and M. Kudrat, 2012: Effect of crop rotation, soil temperature and soil moisture on CO2 emission rate in Indo-Gangetic Plains of India. International Journal of Agriculture and Forestry, 2(3), 117–120.

    Article  Google Scholar 

  • Taneja, G., B. D. Pal, P. K. Joshi, P. K. Aggarwal, and N. K. Tyagi, 2014: Farmers’ preferences for climate-smart agriculture: An assessment in the Indo-Gangetic Plain. IFPRI Discussion Paper 01337. [Available online at http://tinyurl.com/odfd7dc.]

    Google Scholar 

  • Thornthwaite, C. W., 1948: An approach toward a rational classification of climate. Geographical Review, 38(1), 55–94.

    Article  Google Scholar 

  • Vicente-Serrano, S. M., S. Beguería, and J. I. López-Moreno, 2010a: A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Climate, 23, 1696–1718.

    Article  Google Scholar 

  • Vicente-Serrano, S. M., S. Beguería, J. I. López-Moreno, M. Angulo, and A. El Kenawy, 2010b: A new global 0.5 gridded dataset (1901–2006) of a multiscalar drought index: Comparison with current drought index datasets based on the Palmer Drought Severity Index. Journal of Hydrometeorology, 11, 1033–1043.

    Article  Google Scholar 

  • Singh, Y., and Coauthors, 2009: Crop performance in permanent raised bed rice-wheat cropping system in Punjab, India. Field Crops Research, 110, 1–20.

    Article  Google Scholar 

  • Zacharias, M., S. N. Kumar, S. D. Singh, D. N. S. Rani, and P. K. Aggarwal, 2014: Assessment of impacts of climate change on rice and wheat in the Indo-Gangetic plains. Journal of Agrometeorology, 16(1), 9–17.

    Google Scholar 

Download references

Acknowledgements

The work was supported by the National Basic Research Development Program of China (Grant No. 2015CB953602), National Science Foundation of China (Grant Nos. 41271542 and 41661144006) and also a CAS-TWAS President’s Fellowship, 2013. The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, R., Nath, D., Li, Q. et al. Impact of drought on agriculture in the Indo-Gangetic Plain, India. Adv. Atmos. Sci. 34, 335–346 (2017). https://doi.org/10.1007/s00376-016-6102-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-016-6102-2

Key words

Navigation