Skip to main content
Log in

Impacts of weather conditions modified by urban expansion on surface ozone: Comparison between the Pearl River Delta and Yangtze River Delta regions

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

In this paper, the online weather research and forecasting and chemistry (WRF-Chem) model is used to explore the impacts of urban expansion on regional weather conditions and its implication on surface ozone concentrations over the Pearl River Delta(PRD) and Yangtze River Delta(YRD) regions. Two scenarios of urban maps are used in the WRF-Chem to represent the early 1990s (pre-urbanization) and the current urban distribution in the PRD and the YRD. Month-long simulation results using the above land-use scenarios for March 2001 show that urbanization increases both the day- and night-time 2-m temperatures by about 0.6°C and 1.4° C, respectively. Daytime reduction in the wind speed by about 3.0 m s−1 is larger than that for the nighttime (0.5 to 2 m s−1). The daytime increase in the PBL height (> 200 m) is also larger than the nighttime (50–100 m). The meteorological conditions modified by urbanization lead to detectable ozone-concentration changes in the PRD and the YRD. Urbanization increases the nighttime surface-ozone concentrations by about 4.7%–8.5% and by about 2.9%–4.2% for the daytime. In addition to modifying individual meteorological variables, urbanization also enhances the convergence zones, especially in the PRD. More importantly, urbanization has different effects on the surface ozone for the PRD and the YRD, presumably due to their urbanization characteristics and geographical locations. Even though the PRD has a smaller increase in the surface temperature than the YRD, it has (a) weaker surface wind speed, (b) smaller increase in PBL heights, and (c) stronger convergence zones. The latter three factors outweighed the temperature increase and resulted in a larger ozone enhancement in the PRD than the YRD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aw, J., and M. Kleeman, 2003: Evaluating the first-order effect of intraannual temperature variability on urban air pollution. J. Geophys. Res., 108(D12), 4365, doi: 10.1029/2002JD002688.

    Article  Google Scholar 

  • Bey, I., D. J. Jacob, J. A. Logan, and R. M. Yantosca, 2001: Asian chemical outflow to the Pacific in spring: Origins, pathways and budgets. J. Geophys. Res., 106, 23097–23113.

    Article  Google Scholar 

  • Carmichael, G. R., and Coauthors, 2003a: Evaluating regional emission estimates using the TRACE-P observations. J. Geophys. Res., 108(D21), 8810, doi: 10.1029/2002JD003116.

    Article  Google Scholar 

  • Carmichael, G. R., and Coauthors, 2003b: Regionalscale chemical transport modeling in support of intensive field experiments: Overview and analysis of the TRACE-P observations. J. Geophys. Res., 108(D21), 8823, doi: 10.1029/2002JD003117.

    Article  Google Scholar 

  • Chan, C. Y., L. Y. Chan, H. Cui, X. D. Zheng, Y. G. Zheng, Y. Qin, and Y. S. Li, 2003: Origin of the springtime tropospheric ozone maximum over east China at LinAn in 2001. Tellus, 55B, 982–992.

    Google Scholar 

  • Chan, L. Y., H. Y. Liu, K. S. Lam, T. Wang, S. J. Oltmans, and J. M. Harris, 1998: Analysis of the seasonal behavior of tropospheric ozone at Hong Kong. Atmos. Environ., 32, 159–168.

    Article  Google Scholar 

  • Charney, J., W. J. Quirk, S. H. Chow, and J. Kornfield, 1977: A comparative study of the effects of albedo change on drought in semi-arid regions. J. Atmos. Sci., 34, 1366–1385.

    Article  Google Scholar 

  • Chase, T. N., R. A. Pielke, T. G. F. Kittel, R. Nemani, and S.W. Running, 1996: The sensitivity of a general circulation model to large-scale vegetation changes. J. Geophys. Res., 101, 7393–7408.

    Article  Google Scholar 

  • Chen, F., and J. Dudhia, 2001: Coupling and advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569–585.

    Article  Google Scholar 

  • Civerolo, K. L., G. Sistla, S. T. Rao, and D. J. Nowak, 2000: The effects of land use in meteorological modeling: Implications for assessment of future air quality scenarios. Atmos. Environ., 34(10), 1615–1621.

    Article  Google Scholar 

  • Civerolo, K. L., and Coauthors, 2007: Estimating the effects of increased urbanization on surface meteorology and ozone concentrations in the New York City metropolitan region. Atmos. Environ., 41, 1803–1818.

    Article  Google Scholar 

  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two dimensional model. J. Atmos. Sci., 46, 3077–3107.

    Article  Google Scholar 

  • Fast, J. D., and Coauthors, 2006: Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry aerosol model. J. Geophys. Res., 111(D21305), doi: 10.1029/2005JD006721.

  • Fishman, J., and V. G. Brackett, 1997: The climatological distribution of tropospheric ozone derived from satellite measurements using version 7 Total Ozone Mapping Spectrometer and Stratospheric Aerosol and Gas Experiment data sets. J. Geophys. Res., 102(D15), 19275–19278.

    Article  Google Scholar 

  • Foley, J. A., and Coauthors, 2005: Global consequences of land use: Review. Science, 309, 570–574.

    Article  Google Scholar 

  • Friedl, M. A., D. K. McIver, and J. C. F. Hodges, 2002: Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ., 83, 287–302.

    Article  Google Scholar 

  • Grell, G., and Coauthors, 2005: Fully coupled “online” chemistry within the WRF model. Atmos. Environ., 39, 6957–6975.

    Article  Google Scholar 

  • Grossman-Clarke, S., J. A. Zehnder, W. L. Stefanov, Y. Liu, and M. A. Zoldak, 2005: Urban modifications in a mesoscale meteorological model and the effects on near-surface variables in an arid metropolitan region. J. Appl. Meteor., 44, 1281–1297.

    Article  Google Scholar 

  • Guenther, A., and Coauthors, 1995: A global-model of natural volatile organic-compound emissions. J. Geophys. Res., 100(D5), 8873–8892.

    Article  Google Scholar 

  • Harris, J. M., S. J. Oltmans, E. J. Diugokencky, P. C. Novelli, B. J. Johnson, and T. Mefford, 1998: An investigation into the source of the springtime tropospheric ozone maximum at Mauna Loa Observatory. Geophys. Res. Lett., 25, 1895–1898.

    Article  Google Scholar 

  • He, J. F., and D. F. Zhuang, 2005: Analyses the relationship between urban dynamic change pattern of the Yangtze River Delta and the ecological environment. IEEE CNF, 1, 245–248.

    Google Scholar 

  • Hong, S.-Y., H.-M. H. Juang, and Q. Zhao, 1998: Implementation of prognostic cloud scheme for a regional spectral model. Mon. Wea. Rev., 126, 2621–2639.

    Article  Google Scholar 

  • Inoue, E., 1963: On the turbulent structure of air flow within crop canopies, J. Meteor. Soc. Japan, 41(6), 317–326.

    Google Scholar 

  • Jiang, X., C. Wiedinmyer, F. Chen, Z.-L. Yang, and J. C.-F. Lo, 2008: Predicted impacts of climate and land use change on surface ozone in the Houston, Texas, area. J. Geophys. Res., 113, D20312, doi: 10.1029/2008JD009820.

    Article  Google Scholar 

  • Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170–181.

    Article  Google Scholar 

  • Kusaka, H., and F. Kimura, 2004: Coupling a singlelayer urban canopy model with a simple atmospheric model: Impact on urban heat island simulation for an idealized case. J. Meteor. Soc. Japan, 82, 67–80.

    Article  Google Scholar 

  • Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteor., 101, 329–358.

    Article  Google Scholar 

  • Langford, A. O., 1999: Stratosphere-troposphere exchange at the subtropical jet contribution to the tropospheric ozone budget at midlatitudes. Geophys. Res. Lett., 26, 2449–2452.

    Article  Google Scholar 

  • Lee, Y. L., and R. Sequeira, 2001: Visibility degradation across Hong Kong: Its components and their relative contributions. Atmos. Environ., 34, 5861–5872.

    Google Scholar 

  • Liang, J. Y., and S. S. Wu, 1999: Climatological diagnosis of winter temperature variations in Guangdong. Journal of Tropical Meteorology, 15(3), 221–229. (in Chinese)

    Google Scholar 

  • Lin, W. S., and Coauthors, 2007: A numerical study of the influence of urban expansion on monthly climate in dry autumn over Pearl River Delta, China. Theor. Appl. Climatol., 89(1–2), 63–72.

    Article  Google Scholar 

  • Liu, Y., F. Chen, T. Warner, and J. Basara. 2006: Verification of a mesoscale data-assimilation and forecasting system for the Oklahoma city area during the Joint Urban 2003 Field Project. Journal of Applied Meteorology, 45, 912–929.

    Article  Google Scholar 

  • Lo, J., A. Lau, J. Fung, and F. Chen, 2006: Role of land-sea-breeze circulations modified by urbanization on air pollution in the Pearl River Delta Region. J. Geophys. Res., 111, D14104, doi: 10.1029/2005JD006837.

    Article  Google Scholar 

  • Logan, J. A., 1985: Tropospheric ozone: Seasonal behavior, trends, and anthropogenic influence. J. Geophys. Res., 90, 463–482.

    Article  Google Scholar 

  • Miao, S., and F. Chen, 2008: Formation of horizontal convective rolls in urban areas. Atmospheric Research, 89, 298–304.

    Article  Google Scholar 

  • Miao, S., F. Chen, M. A. LeMone, M. Tewari, Q. Li, and Y. Wang, 2009: An observational and modeling study of characteristics of urban heat island and boundary layer structures in Beijing. Journal of Applied Meteorology, 48, 484–501.

    Article  Google Scholar 

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16663–16682.

    Article  Google Scholar 

  • Noh, Y., W. G. Cheon, S.-Y. Hong, and S. Raasch, 2003: Improvement of the Kprofile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107, 401–427.

    Article  Google Scholar 

  • Oltmans, S. J., and H. II. Levy, 1992: Seasonal cycle of surface ozone over the western north Atlantic. Nature, 358, 392–394.

    Article  Google Scholar 

  • Ordonez, C., H. Methis, M. Furger, S. Henne, C. Huglin, J. Staehelin, and A. S. H. Prevot, 2005: Changes of daily surface ozone maxima in Switzerland in all seasons from 1992 to 2002 and discussion of summer 2003. Atmospheric Chemistry and Physics, 5, 1187–1203.

    Article  Google Scholar 

  • Schlünzen, K. H., and J. J. Katzfey, 2003: Relevance of sub-grid-scale land-use effects for mesoscale models. Tellus, 55A, 232–246.

    Google Scholar 

  • Sillman, S., and P. J. Samson, 1995: Impact of temperature on oxidant photochemistry in urban, polluted rural and remote environments. J. Geophys. Res., 100, 11497–11508.

    Article  Google Scholar 

  • Streets, D. G., and Coauthors, 2003: A year-2000 inventory of gaseous and primary aerosol emissions in Asia to support TRACE-P modeling and analysis. J. Geophys. Res., 108(D21), 8809, doi: 10.1029/2002JD003093.

    Article  Google Scholar 

  • Taha, H., S. Konopacki, and H. Akbari, 1998: Impacts of lowered urban air temperatures on precursor emission and ozone air quality. Journal of the Air and Waste Management Association, 48, 860–865.

    Google Scholar 

  • Wang, T., Y. Y. Wu, T. F. Cheung, and K. S. Lam, 2001: A study of surface ozone and the relation to complex wind flow in Hong Kong. Atmos. Environ., 35, 3203–3215.

    Article  Google Scholar 

  • Wang, T., A. J. Ding, D. R. Blake, W. Zahorowski, C.N. Poon, and Y. S. Li, 2003a: Chemical characterization of the boundary layer outflow of air pollution to Hong Kong during February–April 2001. J. Geophys. Res., 108(D20), 8787.

    Article  Google Scholar 

  • Wang, T., C. N. Poon, Y. H. Kwok, and Y. S. Li, 2003b: Characterizing the temporal variability and emission patterns of pollution plumes in the Pearl River Delta of China. Atmos. Environ., 37, 3539–3550.

    Article  Google Scholar 

  • Wang, X. M., G. R. Carmichael, D. L. Chen, and Y. H. Tang, 2005: Impacts of different emission sources on air quality during March 2001 in the Pearl River Delta (PRD) region. Atmos. Environ., 39(29), 5227–5241.

    Article  Google Scholar 

  • Wang, X. M., W. S. Lin, L. M. Yang, R. R. Deng, and H. Lin, 2007: A numerical study of influences of urban land-use change on ozone distribution over the Pearl River Delta Region, China. Tellus, 59B, 633–641.

    Google Scholar 

  • Wild, O., X. Zhu, and M. J. Prather, 2000: Fast-J: Accurate simulation of in- and below cloud photolysis in tropospheric chemical models. Journal of Atmospheric Chemistry, 37, 245–282.

    Article  Google Scholar 

  • Yao, S. M., and S. Chen, 1998: Urban sprawl in spatial tendency in Yangtze River delta region. Chinese Journal of Geographical Sciences, 53(6), 10–15.

    Google Scholar 

  • Zaveri, R. A., and L. K. Peters, 1999: A new lumped structure photochemical mechanism for large-scale applications. J. Geophys. Res., 104, 30387–30415.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuemei Wang  (王雪梅).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Chen, F., Wu, Z. et al. Impacts of weather conditions modified by urban expansion on surface ozone: Comparison between the Pearl River Delta and Yangtze River Delta regions. Adv. Atmos. Sci. 26, 962–972 (2009). https://doi.org/10.1007/s00376-009-8001-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-009-8001-2

Key words

Navigation