Skip to main content
Log in

Influence of the Tibetan Plateau on the summer climate patterns over Asia in the IAP/LASG SAMIL model

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

A series of numerical experiments are carried out by using the Spectral Atmospheric Model of State Key Laboratory of Numerical Modeling Atmospheric Sciences and Geophysical Fluid Dynamics/Institute of Atmospheric Physics (SAMIL) to investigate how the Tibetan Plateau (TP) mechanical and thermal forcing affect the circulation and climate patterns over subtropical Asia. It is shown that, compared to mechanical forcing, the thermal forcing of TP plays a dominant role in determining the large-scale circulation in summer. Both the sensible heating and the latent heating over TP tend to generate a surface cyclonic circulation and a gigantic anticyclonic circulation in the mid-and upper layers, whereas the direct effect of the latter is much more significant. Following a requirement of the time-mean quasi-geostrophic vorticity equation for large-scale air motion in the subtropics, convergent flow and vigorous ascending motion must appear to the east of TP. Hence the summer monsoon in East China is reinforced efficiently by TP. In contrast, the atmosphere to the west of TP is characterized by divergent flow and downward motion, which induces the arid climate in Mid-Asia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Broccoli, A. J., and S. Manabe, 1992: The effects of orography on mid-latitude Northern Hemisphere dry climates. J. Climate, 5, 1181–1201.

    Article  Google Scholar 

  • Charney, J. G., and A. Elliassen, 1949: A numerical method for predicting the perturbations of the middle latitude westerlies. Tellus, 1, 38–55.

    Google Scholar 

  • Chou, C., 2003: Land-sea heating contrasts in an idealized Asian summer monsoon. Climate Dyn., 21, 11–15.

    Article  Google Scholar 

  • Duan, A. M., and G. X. Wu, 2005: Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Climate Dyn., 24, 793–807.

    Article  Google Scholar 

  • Duan, A. M., Y. M. Liu, and G. X. Wu, 2005: Heating status of the Tibetan Plateau from April to June and rainfall and atmospheric circulation anomaly over East Asia in mid-summer. Science in China (D), 48, 250–257.

    Google Scholar 

  • Flohn, H., 1960: Recent investigation on the mechanism of the “summer monsoon” of southern and eastern Asia. Proc. Symp. Monsoon of the World, New Delhi, Hind Union Press, 75–78.

    Google Scholar 

  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462.

    Article  Google Scholar 

  • Hahn, D. G., and S. Manabe, 1975: The role of mountain in the south Asian monsoon circulation. J. Atmos. Sci., 32, 1515–1541.

    Article  Google Scholar 

  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 1176–1196.

    Google Scholar 

  • Hoskins, B., 1991: Towards a PV-θ view of the general circulation. Tellus, 43, 27–35.

    Google Scholar 

  • Li, W. P., G. X. Wu, Y. M. Liu, and X. Liu, 2001: How the surface processes over the Tibetan Plateau affect the summertime Tibetan anticyclone—Numerical Experiments. Chinese J. Atmos. Sci., 25, 809–816. (in Chinese)

    Google Scholar 

  • Liu, H., and G. X. Wu, 1997: Impacts of land surface on climate of July and onset of summer monsoon: A study with an AGCM plus SSiB. Adv. Atmos. Sci., 14, 289–308.

    Article  Google Scholar 

  • Liu, X., G. X. Wu, and W. P. Li, 2001: Heating of the Tibetan Plateau and the large-scale thermal adaptation in summer. Progress in Natural Sciences, 11, 33–39.

    Google Scholar 

  • Liu, X. D., and Z. Y. Yin, 2002: Sensitivity of East Asian monsoon climate to the Tibetan Plateau uplift. Palaeogeography, Palaeoclimatology, Palaeoecology, 183, 223–245.

    Article  Google Scholar 

  • Liu, Y. M., H. Liu, P. Liu, and G. X. Wu, 1999: The effect of spatially nonuniform heating on the formation and variation of subtropical high. Part II: Land surface sensible heating and east Pacific Subtropical High. Acta Meteorologica Sinica, 57, 385–396.

    Google Scholar 

  • Manabe, S., J. Smagorinsky, and R. F. Strickler, 1965: Simulated climatology of a general circulation model with a hydrological cycle. Mon. Wea. Rev., 93, 769–798.

    Article  Google Scholar 

  • Philips, N. A., 1973: Principles of large-scale numerical weather prediction. Dynamics Meteorology, P. Morel, Ed., D. Reidel Publishing Company, Dordrecht, Holland, 1–96.

    Google Scholar 

  • Rodwell, M. J., and B. J. Hoskins, 2001: Subtropical anticyclones and summer monsoons. J. Climate, 14, 3192–3211.

    Article  Google Scholar 

  • Shi, G. Y., 1981: An accurate calculation of the infrared transmission function of the atmospheric constituents. Ph. D. dissertation, Department of Meteorology, Tohoku University of Japan, 191pp.

  • Wang, B., 1996: On the radiation transfer models for climate simulation. Ph. D. dissertation, Institute of Atmospheric Physics, Chinese Academy of Sciences, 92pp. (in Chinese)

  • Wu, T. W., P. Liu, and Z. Z. Wang, 2003: The performance of atmospheric component model R42L9 of GOALS/LASG. Adv. Atmos. Sci., 20, 726–742.

    Article  Google Scholar 

  • Wu, G. X., 1984: The nonlinear response of the atmosphere to large-scale mechanical and thermal forcing. J. Atmos. Sci., 41, 2456–2476.

    Article  Google Scholar 

  • Wu, G. X., and Y. M. Liu, 2000: Thermal adaptation, overshooting, dispersion, and subtropical high. Part I: Thermal adaptation and overshooting. Chinese J. Atmos. Sci., 24, 433–436. (in Chinese)

    Google Scholar 

  • Wu, G. X., and Y. M. Liu, 2003: Summertime quadruplet heating pattern in the subtropics and the associated atmospheric circulation. Geophys. Res. Lett., 30, 1201.

    Article  Google Scholar 

  • Wu, G. X., W. P. Li, and H. Liu, 1997a: Sensible heating-driving air pump of the Tibetan Plateau and the Asian summer monsoon. Memorial Volume of Prof. J. Z. Zhao, D. Z. Ye, Ed., Science Press, Beijing, 126pp. (in Chinese)

    Google Scholar 

  • Wu, G. X., and Coauthors, 1997b: Global ocean-atmosphere-land system model of LASG (GOALS/LASG) and its performance in simulation study. Quart. J. Appl. Meteor., 8(Suppl.), 15–28. (in Chinese)

    Google Scholar 

  • Wu, G. X., Y. M. Liu, and J. Y. Mao, 2004: Adaptation of the atmospheric circulation to thermal forcing over the Tibetan Plateau. Observation, Theory and Modeling of Atmospheric Variability, X. Zhu, Eds., World Scientific Press, London, 92–114.

    Google Scholar 

  • Xue, Y. K., P. J. Sellers, J. L., Kinter, and J. Shukla, 1991: A simplified biosphere model for global climate studies. J. Climate, 4, 345–364.

    Article  Google Scholar 

  • Yanai, M., and G. X. Wu, 2006: Role of the Tibetan Plateau on Asia monsoon. The Asian Monsoon, B. Wang, Ed., Springer, Chichester, 513–629.

    Chapter  Google Scholar 

  • Yanai, M., C. Li, and Z. Song, 1992: Seasonal heating of the Tibetan Plateau and effects of the evolution of the Asian summer monsoon. J. Meteor. Soc. Japan, 70, 189–221.

    Google Scholar 

  • Yeh, T. C., 1950: The circulation of the high troposphere over China in the winter of 1945–1946. Tellus, 2, 173–183.

    Article  Google Scholar 

  • Yeh, T. C., and C. C. Chang. 1974: A preliminary experimental simulation on the heating effect of the Tibetan Plateau on the general circulation over Eastern Asia in China. Science in China (D), XVII, 397–420.

    Google Scholar 

  • Yeh, T. Z., and Y. X. Gao, 1979: Meteorology of the Qinghai-Xizang (Tibet) Plateau. Science Press, Beijing, 278pp.

    Google Scholar 

  • Yeh, T. Z., S. W. Lo, and P. C. Chu, 1957: On the heat balance and circulation structure in troposphere over Tibetan Plateau. Acta Meteorologica Sinica, 28, 108–121. (in Chinese)

    Google Scholar 

  • Zeng, Q. C., 1963: Characteristic parameter and dynamical equation of atmospheric motions. Acta Meteorologica Sinica, 33, 472–483. (in Chinese)

    Google Scholar 

  • Zhou, T. J., R. C. Yu, and Z. Z. Wang, 2005: The Atmospheric General Circulation Model SAMIL and Its Coupled Climate Model GOALS-s. China Meteorological Press, Beijing, 288pp.

    Google Scholar 

  • Zhu, B. Z., 1957a: The influences of large-scale heat source or heat sink and terrain on the steady disturbance in westerlies (Part A). Acta Meteorologica Sinica, 28, 122–140. (in Chinese)

    Google Scholar 

  • Zhu, B. Z., 1957b: The influences of large-scale heat source or heat sink and terrain on the steady disturbance in westerlies (Part B). Acta Meteorologica Sinica, 28, 198–211. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoxiong Wu  (吴国雄).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, A., Wu, G. & Liang, X. Influence of the Tibetan Plateau on the summer climate patterns over Asia in the IAP/LASG SAMIL model. Adv. Atmos. Sci. 25, 518–528 (2008). https://doi.org/10.1007/s00376-008-0518-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-008-0518-2

Key words

Navigation