Skip to main content
Log in

ODSPC: deep learning-based 3D object detection using semantic point cloud

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Three-dimensional object detection plays a key role in autonomous driving, which becomes extremely challenging in occlusion situations. This paper presents a novel multimodal 3D object detection framework which fuses visual semantic information and depth point cloud information to accurately detect targets with distant object features and occlusion situations. The framework consists of the four steps. Firstly, an improved semantic segmentation network is used to extract semantic information of objects containing similar features. Secondly, semantic images and point clouds are combined to generate pixel-level fusion data so that the semantic information and training capability of sparse and far-point clouds can be improved. Thirdly, a deep learning-based point cloud classification network is used for training of the fused data to output accurate detection frames. Fourthly, an extended Kalman filter is incorporated into point cloud prediction for image-based object detection to further enhance the robustness of object detection. Both Cityscapes and KITTI datasets are used in ablation study and experiments to validate the effectiveness of the proposed framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Gonzalez, D., Perez, J., Milanes, V., Nashashibi, F.: A review of motion planning techniques for automated vehicles. IEEE Trans. Intell. Transp. Syst. 17(4), 1135–1145 (2016)

    Article  Google Scholar 

  2. Yi, C.L., Zhang, K.F., Peng, N.L.: A multi-sensor fusion and object tracking algorithm for self-driving vehicles. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 233(9), 2293–2300 (2019)

    Article  Google Scholar 

  3. Zhang, X.Q., Wang, X.X., Gu, C.H.: Online multi-object tracking with pedestrian re-identification and occlusion processing. Vis. Comput. 37(5), 1089–1099 (2021)

    Article  Google Scholar 

  4. Dames, P.M.: Distributed multi-target search and tracking using the phd filter. Auton. Robot. 44(3–4), 673–689 (2020)

    Article  Google Scholar 

  5. Mao, Q.C., Sun, H.M., Zuo, L.Q., Jia, R.S.: Finding every car: a traffic surveillance multi-scale vehicle object detection method. Appl. Intell. 50, 3125–3136 (2020)

    Article  Google Scholar 

  6. Wu, P., Gu, L.P., Yan, X.F., et al.: Pv-rcnn plus: semantical point-voxel feature interaction for 3D object detection. Vis. Comput. 45, 456 (2022). https://doi.org/10.1007/s00371-022-02672-2

    Article  Google Scholar 

  7. Maiettini, E., Pasquale, G., Rosasco, L., Natale, L.: On-line object detection: a robotics challenge. J. Auton. Robots 44(5), 739–757 (2020)

    Article  Google Scholar 

  8. Wang, Y.N., Wang, H.W., Cao, J.Z.: A contour self-compensated network for salient object detection. Visual Computer 37(6), 1467–1479 (2020)

    Article  Google Scholar 

  9. Yuan, J.Y., Zhang, G.X., Li, F.P., et al.: Independent moving object detection based on a vehicle mounted binocular camera. IEEE Sens. J. 21(10), 11522–11531 (2021)

    Article  Google Scholar 

  10. Chen, L., Fan, L., Xie, G.D., Huang, K., Nuchter, A.: Moving-object detection from consecutive stereo pairs using slanted plane smoothing. IEEE Trans. Intell. Transp. Syst. 18(11), 3093–3102 (2017)

    Article  Google Scholar 

  11. Jafari, O.H., Mitzel, D., Leibe, B.: Real-time rgb-d based people detection and tracking for mobile robots and head-worn cameras. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 5636–5643 (2014)

  12. Cao, L.Y., Zhang, X.L., Wang, Z.S., Ding, G.Y.: Multi angle rotation object detection for remote sensing image based on modified feature pyramid networks. Int. J. Remote Sens. 42(14), 5257–5280 (2021)

    Article  Google Scholar 

  13. Zhao, J.X., Xu, H., Liu, H.C., Wu, J.Q., Zheng, Y.C., Wu, D.Y.: Detection and tracking of pedestrians and vehicles using roadside lidar sensors. Transp. Res. Part C Emerg. Technol. 100, 68–87 (2019)

    Article  Google Scholar 

  14. Wang, H., Lou, X.Y., Cai, Y.F., Li, Y.C., Chen, L.: Real-time vehicle detection algorithm based on vision and lidar point cloud fusion. J. Sens. 2019, 1–9 (2019)

    Google Scholar 

  15. Bello, S.A., Yu, S.S., Wang, C., Adam, J.M., Li, J.: Review: deep learning on 3D point clouds. Remote Sens. 12(11), 1–34 (2020)

    Article  Google Scholar 

  16. Yan, Z., Duckett, T., Bellotto, N.: Online learning for 3D lidar-based human detection: experimental analysis of point cloud clustering and classification methods. Auton. Robots 44(2), 147–164 (2020)

    Article  Google Scholar 

  17. Xie, Q., Lai, Y.K., Wu, J., Wang, Z.T., Zhang, Y.M., Xu, K., Wang, J.: Vote-based 3D object detection with context modeling and sob-3dnms. Int. J. Comput. Vis. 129, 1857–1874 (2021)

    Article  Google Scholar 

  18. Asvadi, A., Premebida, C., Peixoto, P., Nunes, U.: 3D lidar-based static and moving obstacle detection in driving environments: an approach based on voxels and multi-region ground planes. Robot. Auton. Syst. 83, 299–311 (2016)

    Article  Google Scholar 

  19. Mao, J., Shi, S., Wang, X., Li, H.: 3D object detection for autonomous driving: a review and new outlooks (2022). arXiv preprint arXiv:2206.09474

  20. Bai, X., Hu, Z., Zhu, X., Huang, Q., Chen, Y., Fu, H., Tai, C.-L.: Transfusion: robust lidar-camera fusion for 3D object detection with transformers (2022). arXiv preprint arXiv:2203.11496

  21. Du, X.X., Ang, M.H., Karaman, S., Rus, D.: A general pipeline for 3D detection of vehicles. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3194–3200 (2018)

  22. Xu, D.F., Anguelov, D., Jain, A.: Pointfusion: deep sensor fusion for 3D bounding box estimation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 244–253 (2018)

  23. Huang, T., Liu, Z., Chen, X., Bai, X.: Epnet: enhancing point features with image semantics for 3D object detection (2020). arXiv preprint arXiv:2007.08856

  24. Wang, Z.J., Zhao, Z., Jin, Z., Che, Z.P., Tang, J., Peng, Y.X.: Multi-stage fusion for multi-class 3D lidar detection. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3113–3121 (2021)

  25. Shi, S.S., Wang, X.G., Li, H.S.: PointRCNN: 3D object proposal generation and detection from point cloud. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–779 (2019)

  26. Yang, Z.T., Sun, Y., Liu, S., Jia, J.Y.: 3DSSD: Point-based 3D single stage object detector. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11037–11045 (2020)

  27. Zhou, Y., Tuzel, O.: Voxelnet: end-to-end learning for point cloud-based 3D object detection. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4490–4499 (2018)

  28. Qi, C.R., Liu, W., Wu, C.X., Su, H., Guibas, L.J.: Frustum pointnets for 3D object detection from rgb-d data. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 918–927 (2018)

  29. Chen, X.Z., Ma, H.M., Wan, J., Xia, T.: Multi-view 3D object detection network for autonomous driving. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.6526–6534 (2017)

  30. Ku, J., Mozifian, M., Lee, J., Harakeh, A., Waslander, S.L.: Joint 3D proposal generation and object detection from view aggregation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.5750–5757 (2018)

  31. Shi, S., Guo, C., Jiang, L., Wang, Z., Shi, J., Wang, X., Li, H.: Pvrcnn: point-voxel feature set abstraction for 3D object detection. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.10529–10538 (2020)

  32. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)

    Article  Google Scholar 

  33. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3D classification and segmentation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.77–85 (2017)

  34. Cordts, M., Omran, M., Ramos, S. et al.: The cityscapes dataset for semantic urban scene understanding. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.3213–3223 (2016)

  35. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The kitti vision benchmark suite. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp.3354–3361 (2012)

  36. Kesten, R., Usman, M., Houston, J., Pandya, T. et al.: Level 5 perception dataset 2020 (2019). https://level-5.global/level5/data/

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (Grant No.52075461), the Key Project in Science and Technology Plan of Xiamen, China (Grant No. 3502Z20201015), and the Innovation Method Special Project of Ministry of Science and Technology of China (Grant No. 2020IM010100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyuan Zhu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, S., Huang, T., Zhu, Q. et al. ODSPC: deep learning-based 3D object detection using semantic point cloud. Vis Comput 40, 849–863 (2024). https://doi.org/10.1007/s00371-023-02820-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-023-02820-2

Keywords

Navigation