Skip to main content
Log in

Mobilized shear strengths of Mississippi River Delta Front sediments during submarine landslides

  • Letter
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

Data is available by request from the corresponding author.

References

  • ASTM (2021) D6467-21e1 Standard test method for torsional ring shear test to determine drained fully softened shear strength and nonlinear strength envelope of cohesive soils (using normally consolidated specimen) for slopes with no preexisting shear surfaces. West Conchohocken, PA: ASTM International

  • ASTM (2017). D4318-17e1 Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. West Conshohocken, PA: ASTM International.

  • ASTM (2019). D2216-19 Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. West Conshohocken, PA: ASTM International.

  • Baldwin, W., Ackerman, S., Worley, C., Danforth, W., & Chaytor, J. (2018). High-resolution geophysical data collected along the Mississippi River Delta front offshore of southeastern Louisiana, U.S. Geological Survey Field Activity 2017-003-FA [Data set]. U.S. Geological Survey. https://doi.org/10.5066/F7X929K6

  • Bea RG (1975) Gulf of Mexico hurricane wave heights. J Petrol Technol 27:1160–1172. https://doi.org/10.2118/5317-PA

    Article  Google Scholar 

  • Bea, R. G. and Audibert, J. M. E. (1980). "Performance of offshore platforms and pipelines in the Mississippi River Delta." Journal of Geotechnical Engineering Division, American Society of Civil Engineering.

  • Bea RG, Bernard HA, Arnold P, Doyle EH (1975) Soil movements and forces developed by wave-induced slides in the Mississippi Delta. J Petrol Technol 27:500–514

    Article  Google Scholar 

  • Bennett RH, Bryant WR, Keller GH (1977) Clay fabric and geotechnical properties of selected submarine sediment cores from the Mississippi Delta. In: NOAA Professional Paper 9:86

    Google Scholar 

  • Bewick V, Cheek L, Ball J (2004) Statistics review 10: further nonparametric methods. Crit Care 8:196–199. https://doi.org/10.1186/cc2857

    Article  Google Scholar 

  • Biscontin, G., & Pestana, J. (1999). Influence of peripheral velocity on undrained shear strength and deformability characteristics of a bentonite-kaolinite mixture. disciplinas.stoa.usp.br.

  • Biscontin, G., & Pestana, J. (2001). Influence of peripheral velocity on vane shear strength of an artificial clay. Geotechnical Testing Journal. https://www.astm.org/DIGITAL_LIBRARY/JOURNALS/GEOTECH/PAGES/GTJ11140J.htm

  • Blum, M. D., & Roberts, H. H. (2009). Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nature Geoscience, 2, 488. https://doi.org/10.1038/ngeo553https://www.nature.com/articles/ngeo553#supplementary-information

  • Blum MD, Roberts HH (2012) The Mississippi Delta Region: past, present, and future. Annu Rev Earth Planet Sci 40:655–683

    Article  Google Scholar 

  • Boggs, S., Jr., (2014), Principles of sedimentology and stratigraphy, 5th ed.: Pearson Education, London, U.K., 608 p.

  • Bromhead, E. N. (1979). A simple ring shear apparatus. Ground engineering, 12(5).

  • Bryant WR, Hottman W, Trabant P (1975) Permeability of unconsolidated and consolidated marine sediments, Gulf of Mexico. Mar Geotechnol 1:1–14. https://doi.org/10.1080/10641197509388149

    Article  Google Scholar 

  • Bryant WR, Wallin CS (1968) Stability and geotechnical characteristics of marine sediments, Gulf of Mexico. Trans Gulf Coast Assoc Geol Soc 18:334–356

    Google Scholar 

  • Burns, S. F., Hadley, W. O., Mutchler, J. W., Smith, S. M., Siddiqui, A., & Hernandez, M. (1990). Development of Design Criteria for the Prevention of Slope Failures. Louisiana Department of Transportation Research Center.

  • Cadigan, Jack Andrew, "Evolution of Sub-Decadal Mass Failures in the Mississippi River Delta Front" (2021). LSU Doctoral Dissertations. 5695. https://digitalcommons.lsu.edu/gradschool_dissertations/5695

  • Cardinell, A. P. (1983). An Investigation of Mass Movement Structures on the Mississippi River Delta Front off Southwest Pass. Department of Geology. Urbana, IL, University of Illinois at Urbana-Champaign. Master of Science: 253.

  • Casagrande A, Wilson SD (1951) Effect of rate of loading on the strength of clays and shales at constant water content. Géotechnique 2:251–263. https://doi.org/10.1680/geot.1951.2.3.251

    Article  Google Scholar 

  • Chaney RC, Richardson GN (1988) Measurement of residual/remolded vane shear strength of marine sediments. In: Richards AF (ed) Vane shear strength testing in soils: field and laboratory studies. ASTM International, West Conshohocken, pp 166–181

  • Chaytor JD, Baldwin WE, Bentley SJ, Damour M, Jones D, Maloney J, Miner MD, Obelcz J, Xu K (2020) Short- and long-term movement of mudflows of the Mississippi River Delta Front and their known and potential impacts on oil and gas infrastructure. Geol Soc, London, Special Publications 500:587. https://doi.org/10.1144/SP500-2019-183

    Article  Google Scholar 

  • Coleman JM, Garrison LE (1977) Geological aspects of marine slope stability, northwestern Gulf of Mexico. Mar Geotechnol 2:9–44

    Article  Google Scholar 

  • Coleman JM, Prior DB (1988) Mass wasting on continental margins. Annu Rev Earth Planet Sci 16:101–121

    Article  Google Scholar 

  • Coleman, J. M., Prior, D. B., & Garrison, L. E. (1978). Submarine landslides in the Mississippi River Delta. Proceedings of the Offshore Technology Conference, 10(3170). https://doi.org/10.4043/3170-MS

  • Corbett DR, McKee B, Allison MA (2006) Nature of decadal-scale sediment accumulation on the western shelf of the Mississippi River delta. Cont Shelf Res 26:2125–2140. https://doi.org/10.1016/j.csr.2006.07.012

    Article  Google Scholar 

  • Denommee KC, Bentley SJ, Harazim D (2018) Mechanisms of muddy clinothem progradation on the Southwest Louisiana Chenier Plain inner shelf. Geo-Mar Lett 38:273–285. https://doi.org/10.1007/s00367-017-0525-3

    Article  Google Scholar 

  • Denommee KC, Bentley SJ, Harazim D, Macquaker JHS (2016) Hydrodynamic controls on muddy sedimentary-fabric development on the Southwest Louisiana subaqueous delta. Mar Geol 382:162–175. https://doi.org/10.1016/j.margeo.2016.09.013

    Article  Google Scholar 

  • Dey R, Hawlader BC, Phillips R, Soga K (2016) Numerical modelling of submarine landslides with sensitive clay layers. Géotechnique 66:454–468. https://doi.org/10.1680/jgeot.15.P.111

    Article  Google Scholar 

  • Duncan JM, Wright SG, Brandon TL (2014) Soil strength and slope stability. Wiley

    Google Scholar 

  • Dunlap, W. A. (1981). Geotechnical applications in soft sediments : Section 2. In A. Bouma, D. Sangrey, J. Coleman, D. Prior, A. Trippet, W. Dunlap, & J. Hooper (Eds.), CN18: Offshore Geologic Hazards (pp. 2.3-2.41). AAPG.

  • Eid, H., & Doerfler, C. (1999). Effect of shear displacement rate on internal shear strength of a reinforced geosynthetic clay liner. Geosynthetics International. https://www.icevirtuallibrary.com/doi/abs/10.1680/gein.6.0151

  • Eid, H. T., & Rabie, K. H. (2017). Fully Softened Shear Strength for Soil Slope Stability Analyses. Int. J. Geomech. International Journal of Geomechanics, 17(1).

  • Esrig MI, Kirby RC (1977) Implications of gas content for predicting the stability of submarine slopes. Mar Geotechnol 2:81–100. https://doi.org/10.1080/10641197709379771

    Article  Google Scholar 

  • Fisk HN, McFarlan E, Kolb CR, Wilbert LJ (1954) Sedimentary framework of the modern Mississippi Delta. J Sediment Petrol 24:76–99

    Article  Google Scholar 

  • Gabet EJ, Mudd SM (2006) The mobilization of debris flows from shallow landslides. Geomorphology 74:207–218. https://doi.org/10.1016/j.geomorph.2005.08.013

    Article  Google Scholar 

  • Gamez JA, Stark TD (2014) Fully softened shear strength at low stresses for levee and embankment design. J Geotech Geoenviron 140:06014010. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001151

    Article  Google Scholar 

  • Georgiopoulou, A.; Amy, L. A.; Benetti, S.; Chaytor, J. D.; Clare, M. A. ; Gamboa, D.; Haughton, P. D. W.; Moernaut, J.; Mountjoy, J. J.. (2020) Subaqueous mass movements and their consequences: Advances in process understanding, monitoring and hazard assessments. Geological Society of London. http://dx.doi.org/10.1144/SP500

  • Guidroz WS (2009) Subaqueous, hurricane-initiated shelf failure morphodynamics along the Mississippi River Delta Front, north-central Gulf of Mexico. Doctor of Philosophy In: The Department of Oceanography and Coastal Sciences. Louisiana State University, Baton Rouge, Louisiana

  • Hampton MA, Lee HJ, Locat J (1996) Submarine landslides. Rev Geophys 34:33–59

    Article  Google Scholar 

  • Helenelund, K.V. 1977. Methods for reducing undrained shear strength of soft clay. In Report (3). Swedish Geotechnical Institute. pp. 1–59.

  • Hooke RL, Hanson B, Iverson NR, Jansson P, Fischer UH (1997) Rheology of till beneath Storglaciären, Sweden. J Glaciol 43:172–179. https://doi.org/10.3189/S0022143000002938

    Article  Google Scholar 

  • Iverson NR (2010) Shear resistance and continuity of subglacial till: hydrology rules. J Glaciol 56:1104–1114. https://doi.org/10.3189/002214311796406220

    Article  Google Scholar 

  • Iverson RM, Reid ME, LaHusen RG (1997) Debris-flow mobilization from landslides. Annu Rev Earth Planet Sci 25:85–138. https://doi.org/10.1146/annurev.earth.25.1.85

    Article  Google Scholar 

  • Jafari NH, Harris BD, Cadigan JA, Day JW, Sasser CE, Kemp GP, Wigand C, Freeman A, Sharp LA, Pahl J, Shaffer GP, Holm GO, Lane RR (2019) Wetland shear strength with emphasis on the impact of nutrients, sediments, and sea level rise. Estuar Coast Shelf Sci 229:106394. https://doi.org/10.1016/j.ecss.2019.106394

    Article  Google Scholar 

  • Jung, B. and G. Biscontin (2006). Modeling of strain rate effects on clay in simple shear. GeoCongress 2006.

  • Keller G, Bentley SJ, Georgiou IY, Maloney J, Miner MD, Xu K (2017) River-plume sedimentation and 210Pb/7Be seabed delivery on the Mississippi River Delta Front. Geo-Mar Lett 37:259–272. https://doi.org/10.1007/s00367-016-0476-0

    Article  Google Scholar 

  • Keller GH, Prior DB (1986) Sediment dynamics of the Huanghe (Yellow-River) delta and neighboring Gulf of Bohai, Peoples-Republic-of-China - project overview. Geo-Mar Lett 6:63–66. https://doi.org/10.1007/Bf02281641

    Article  Google Scholar 

  • Keller, G. P. (2015). Sub-Marine Sediment Instability near Southwest Pass of the Mississippi River: Evidence of Mass Movements from Radiochemistry and Other Proxies. Master of Science, Louisiana State Unversity and Agricultural and Mechanical College.

  • Kesel RH (2003) Human modifications to the sediment regime of the Lower Mississippi River flood plain. Geomorphology 56:325–334. https://doi.org/10.1016/S0169-555X(03)00159-4

    Article  Google Scholar 

  • Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47:583–621. https://doi.org/10.1080/01621459.1952.10483441

    Article  Google Scholar 

  • Leroueil S (2001) Natural slopes and cuts: movement and failure mechanisms. Géotechnique 51:197–243. https://doi.org/10.1680/geot.2001.51.3.197

    Article  Google Scholar 

  • Locat J, Demers D (1988) Viscosity, yield stress, remolded strength, and liquidity index relationships for sensitive clays. Can Geotech J 25:799–806. https://doi.org/10.1139/t88-088

    Article  Google Scholar 

  • Locat J, Lee HJ (2002) Submarine landslides: advances and challenges. Can Geotech J 39:193–212. https://doi.org/10.1139/T01-089

    Article  Google Scholar 

  • Maloney JM, Bentley SJ, Xu K, Obelcz J, Georgiou IY, Jafari NH, Miner MD (2020) Mass wasting on the Mississippi River subaqueous delta. Earth Sci Rev 200:103001. https://doi.org/10.1016/j.earscirev.2019.103001

    Article  Google Scholar 

  • Maloney JM, Bentley SJ, Xu K, Obelcz J, Georgiou IY, Miner MD (2018) Mississippi River subaqueous delta is entering a stage of retrogradation. Mar Geol 400:12–23. https://doi.org/10.1016/j.margeo.2018.03.001

    Article  Google Scholar 

  • Mesri G, Shahien M (2003) Residual shear strength mobilized in first-time slope failures. J Geotech Geoenviron 129:12–31. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:1(12)

    Article  Google Scholar 

  • NAVFAC (2012). Handbook for Marine Geotechnical Engineering. D. Thompson and D. J. Beasley. Port Hueneme, California, Naval Facilities Engineering Command.

  • Nodine, M. C., S. G. Wright, R. B. Gilbert and E. G. Ward (2006). "Mudflows and Mudslides During Hurricane Ivan." Proceedings of the Offshore Technology Conference(18328).

  • Noorany I (1984) Phase relations in marine soils. J Geotech Eng 110:539–543. https://doi.org/10.1061/(ASCE)0733-9410(1984)110:4(539)

    Article  Google Scholar 

  • Norem H, Locat J, Schieldrop B (1990) An approach to the physics and the modeling of submarine flowslides. Mar Geotechnol 9:93–111. https://doi.org/10.1080/10641199009388233

    Article  Google Scholar 

  • Obelcz J, Xu K, Bentley SJ, Georgiou IY, Maloney J, Miner MD (2017) Sub-decadal submarine landslides are important drivers of deltaic sediment flux: insights from the Mississippi River Delta Front. Geology 45:703–706. https://doi.org/10.1130/g38688.1

    Article  Google Scholar 

  • Prior DB, Coleman JM (1978) Disintegrating retrogressive landslides on very-low-angle subaqueous slopes, Mississippi Delta. Mar Geotechnol 3:37–60

    Article  Google Scholar 

  • Prior, D. B., & Coleman, J. M. (1978). Submarine landslides on the Mississippi River delta-front slope. Geoscience and Man(19), 41-53.

  • Prior DB, Coleman JM (1979) Submarine landslides; geometry and nomenclature. Zeitschrift Fuer Geomorphologie 23:415–426

    Google Scholar 

  • Prior DB, Suhayda JN, Lu NZ, Bornhold BD, Keller GH, Wiseman WJ, Wright LD, Yang ZS (1989) Storm wave reactivation of a submarine landslide. Nature 341:47–50

    Article  Google Scholar 

  • Quiros, G. W., Young, A. G., Pelletier, J. H., & Chan, J. H. C. (1983). Shear strength interpretation for Gulf of Mexico clays. In (pp. 144-165). Am. Soc. Civ. Eng. : New York, NY, United States.

  • R Development Core Team (2021) R: a language and environment for statistical computing. In. R Foundation for Statistical Computing, Vienna

  • Roberts HH (1980) Sediment characteristics of Mississippi River Delta-front mudflow deposits. Trans - Gulf Coast Assoc Geol Soc 30:485–496

    Google Scholar 

  • Roberts, H. H., Cratsley, D. W., & Whelan III, T. (1976). Stability of Mississippi Delta sediments as evaluated by analysis of structural features in sediment borings. Proceedings of the Offshore Technology Conference(2425). https://doi.org/10.4043/2425-MS

  • Roberts HH, Suhayda JN, Coleman JM (1980) Sediment deformation and transport on low-angle slopes: Mississippi River Delta. In: Coates DR, Vitek JD (eds) Thresholds in geomorphology. George Allen & Unwin, London, pp 131–167

    Google Scholar 

  • Saleh, A. A., & Wright, S. G. (1997). Shear strength correlations and remedial measure guidelines for long-term stability of slopes constructed of highly plastic clay soils (FHWA/TX-98/1435-2F).

  • Shephard, L. E., Bryant, W. R., & Dunlap, W. A. (1978). Consolidation characteristics and excess pore water pressures of Mississippi Delta sediments. Proceedings of the Offshore Technology Conference(3167). https://doi.org/10.4043/3167-MS

  • Simpson RH, Saffir H (1974) The hurricane disaster potential scale. Weatherwise 27:169

    Article  Google Scholar 

  • Skempton AW (1964) Long-Term Stability of Clay Slopes Géotechnique 14:77–102. https://doi.org/10.1680/geot.1964.14.2.77

    Article  Google Scholar 

  • Smith, J. E., IV, Bentley, S. J., Courtois, A. J., Obelcz, J., Chaytor, J. D., Maloney, J. M., Georgiou, I. Y., Xu, K., & Miner, M. D. (2017, December 01, 2017). Facies-dependent variations in sediment physical properties on the Mississippi River Delta Front, USA: evidence for depositional and post-depositional processes AGU Fall Meeting, New Orleans, LA. https://ui.adsabs.harvard.edu/abs/2017AGUFMEP21B1839S

  • Stark, T. (2012). Port of Anchorage Intermodal Expansion: Bootlegger Cove Clay Analysis and Testing Attachment D: Ring Shear Testing Report.

  • Stark, Timothy D., and Hisham T. Eid. "Modified Bromhead ring shear apparatus." Geotechnical Testing Journal 16 (1993): 100-100.

  • Stark, Timothy D., and Rodrigo Fernandez. "Fully softened shear strength measurement and correlations." Geotechnical Testing Journal 43.5 (2019): 1201-1215.

  • Stark, T. D., Cadigan, J. A., & Jafari, N. H. (2020). Drained Shear Displacement Rates in Fully Softened Strength Torsional Ring Shear Testing. Geotechnical Testing Journal, 44.

  • Stark TD, Choi H, McCone S (2005) Drained shear strength parameters for analysis of landslides. J Geotech Geoenviron 131:575–588. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:5(575)

    Article  Google Scholar 

  • Stark TD, Contreras IA (1996) Constant volume ring shear apparatus. Geotech Test J 19:3–11

    Article  Google Scholar 

  • Stark TD, Hussain M (2013) Empirical correlations: drained shear strength for slope stability analyses. J Geotech Geoenviron 139:853–862. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000824

    Article  Google Scholar 

  • Stark TD, Vettel JJ (1992) Bromhead ring shear test procedure. Geotech Test J 15:24–32

    Article  Google Scholar 

  • Suhayda, J. N., & Prior, D. B. (1978). Explanation of submarine landslide morphology by stability analysis and rheological models. Proceedings of the Offshore Technology Conference(3171). https://doi.org/10.4043/3171-MS

  • Terzaghi, K. (1956). Varieties of submarine slope failures. Harvard Soil Mechanics Series, 52, 41.

    Google Scholar 

  • Tika TE, Vaughan PR, Lemos LJLJ (1996) Fast shearing of pre-existing shear zones in soil. Géotechnique 46:197–233. https://doi.org/10.1680/geot.1996.46.2.197

    Article  Google Scholar 

  • Trabant, P. K. (1978). Submarine geomorphology and geology of the Mississippi River delta front. Doctor of Philosophy in Oceanography, Texas A&M University, United States.

  • Trabant, P. K., Bryant, W. R., & Coleman, J. M. (1979). Submarine Geomorphology & Geology Of The Mississippi River Delta Front. Proceedings of the Offshore Technology Conference(3572). https://doi.org/10.4043/3572-MS

  • Wells JT, Prior DB, Coleman JM (1980) Flowslides in muds on extremely low angle tidal flats, northeastern South America. Geology 8:272–275. https://doi.org/10.1130/0091-7613(1980)8%3c272:Fimoel%3e2.0.Co;2

    Article  Google Scholar 

  • Whelan III, T., Coleman, J. M., Suhayda, J. N., & Garrison, L. E. (1975). The geochemistry of Recent Mississippi River Delta sediments: Gas concentration and sediment instability. Proceedings of the Offshore Technology Conference(2342). https://doi.org/10.4043/2342-MS

  • Wright, S. G. (1976). Analyses for wave induced sea-floor movements. Proceedings of the Offshore Technology Conference(2427). https://doi.org/10.4043/2427-B-MS

Download references

Funding

Study collaboration and funding were provided by the US Department of the Interior, Bureau of Ocean Energy Management, Coastal Marine Institute, Washington, D.C., under Cooperative Agreement number M13AC00013. Geophysical data acquisition was supported by the Field Support Group of Coastal Studies Institute of Louisiana State University. Funding for the first author was provided by the Donald W. Clayton Ph.D. Fellowship and by the Louisiana Sea Grant (LSG) through its Coastal Science Assistantship Program (CSAP), as well as the Society of Underwater Technology Student Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack A. Cadigan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cadigan, J.A., Jafari, N.H. & Georgiou, I.Y. Mobilized shear strengths of Mississippi River Delta Front sediments during submarine landslides. Geo-Mar Lett 42, 8 (2022). https://doi.org/10.1007/s00367-022-00731-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00367-022-00731-0

Navigation