Skip to main content

Advertisement

Log in

Effect of echolocation behavior-related constant frequency–frequency modulation sound on the frequency tuning of inferior collicular neurons in Hipposideros armiger

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

In constant frequency–frequency modulation (CF–FM) bats, the CF–FM echolocation signals include both CF and FM components, yet the role of such complex acoustic signals in frequency resolution by bats remains unknown. Using CF and CF–FM echolocation signals as acoustic stimuli, the responses of inferior collicular (IC) neurons of Hipposideros armiger were obtained by extracellular recordings. We tested the effect of preceding CF or CF–FM sounds on the shape of the frequency tuning curves (FTCs) of IC neurons. Results showed that both CF–FM and CF sounds reduced the number of FTCs with tailed lower-frequency-side of IC neurons. However, more IC neurons experienced such conversion after adding CF–FM sound compared with CF sound. We also found that the Q 20 value of the FTC of IC neurons experienced the largest increase with the addition of CF–FM sound. Moreover, only CF–FM sound could cause an increase in the slope of the neurons’ FTCs, and such increase occurred mainly in the lower-frequency edge. These results suggested that CF–FM sound could increase the accuracy of frequency analysis of echo and cut-off low-frequency elements from the habitat of bats more than CF sound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BF:

Best frequency

CF:

Constant frequency

FM:

Frequency modulation

FTC:

Frequency tuning curve

IC:

Inferior colliculus

LS:

Lower-slope

MT:

Minimal threshold

TL:

Tailed lower-frequency-side

TU:

Tailed upper-frequency-side

US:

Upper-slope

References

  • Bell GP (1985) The sensory basis of prey location by the California leaf-nosed bat Macrotus californicus (Chiroptera: Phyllostomidae). Behav Ecol Sociobiol 16:343–347

    Article  Google Scholar 

  • Blauert J, Divenyi PL (1988) Spectral selectivity in binaural contralateral inhibition. Acustica 66:267–274

    Google Scholar 

  • Brosch M, Schreiner CE (1997) Time course of forward masking tuning curves in cat primary auditory cortex. J Neurophysiol 77:923–943

    CAS  PubMed  Google Scholar 

  • Casseday JH, Covey E (1992) Frequency tuning properties of neurons in the inferior colliculus of an FM bat. J Comp Neurol 319:34–50

    Article  CAS  PubMed  Google Scholar 

  • Casseday JH, Ehrlich D, Covey E (1994) Neural tuning for sound duration: role of inhibitory mechanisms in the inferior colliculus. Science 264:847–850

    Article  CAS  PubMed  Google Scholar 

  • Casseday JH, Ehrlich D, Covey E (2000) Neural measurement of sound duration: control by excitatory-inhibitory interaction in the inferior colliculus. J Neurophysiol 84:1475–1487

    CAS  PubMed  Google Scholar 

  • Chen QC, Jen P, Wu FJ (2002) GABAergic inhibition can sharpen frequency tuning of auditory cortical neurons in big brown bat, Eptesicus fuscus. Acta Zoologica Sinica 48:346–352

    CAS  Google Scholar 

  • Dai H, Wright BA (1995) Detecting signals of unexpected or uncertain durations. J Acoust Soc Am 98:798–806

    Article  CAS  PubMed  Google Scholar 

  • Dai H, Wright BA (1999) Predicting detectability of tones with unexpected durations. J Acoust Soc Am 105:2043–2046

    Article  CAS  PubMed  Google Scholar 

  • Egorova M, Ehret G, Vartanian I, Esser KH (2001) Frequency response areas of neurons in the mouse inferior colliculus. I. Threshold and tuning characteristics. Exp Brain Res 140:145–161

    Article  CAS  PubMed  Google Scholar 

  • Ehret G, Merzenich MM (1988) Complex sound analysis (frequency resolution, filtering and spectral integration) by single units of the inferior colliculus of the cat. Brain Res Rev 13:139–163

    Article  Google Scholar 

  • Eklöf J, Tranefors T, Vázquez LB (2002) Precedence of visual cues in the emballonurid bat Balantiopteryx plicata. Mamm boil 67:42–46

    Google Scholar 

  • Eklöf J, Šuba J, Petersons G, Rydell J (2014) Visual acuity and eye size in five European bat species in relation to foraging and migration strategies. Environ Exp Biol 12:1–6

    Google Scholar 

  • Faure PA, Fremouw T, Casseday JH, Covey E (2003) Temporal masking reveals properties of sound-evoked inhibition in duration tuned neurons of the inferior colliculus. J Neurosci 23:3052–3065

    CAS  PubMed  Google Scholar 

  • Fu ZY, Tang J, Jen PHS, Chen QC (2010) The auditory response properties of single-on and double-on responders in the inferior colliculus of the leaf-nosed bat, Hipposideros armiger. Brain Res 1306:39–52

    Article  CAS  PubMed  Google Scholar 

  • Griffin DR (1958) Listening in the dark. Yale University Press, New Haven, pp 57–80

    Google Scholar 

  • Grinnell AD (1963) The neurophysiology of audition in bats: intensity and frequency parameters. J Physiol 167:38–66

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grinnell AD (1973) Neural processing mechanisms in echolocating bats, correlated with differences in emitted sounds. J Acoust Soc Am 54:147–156

    Article  CAS  PubMed  Google Scholar 

  • Hafter ER, Schlauch RS, Tang J (1993) Attending to auditory filters that were not stimulated directly. J Acoust Soc Am 94:743–747

    Article  CAS  PubMed  Google Scholar 

  • Jen PHS, Zhang J (2000) The role of GABAergic inhibition on direction-dependent sharpening of frequency tuning in bat inferior collicular neurons. Brain Res 862:123–127

    Article  Google Scholar 

  • Jen PHS, Zhou XM (1999) Temporally patterned sound trains affect duration tuning characteristics of bat inferior collicular neurons. J Comp Physiol A 185:471–478

    Article  CAS  PubMed  Google Scholar 

  • Jiang D, Palmer AR, Winter IM (1996) Frequency extent of two-tone facilitation in onset units in the ventral cochlear nucleus. J Neurophysiol 75:380–395

    CAS  PubMed  Google Scholar 

  • Katsuki Y, Sumi T, Uchiyama H, Watanabe T (1958) Electric responses of auditory neurons in cat to sound stimulation. J Neurophysiol 21:569–588

    CAS  PubMed  Google Scholar 

  • Katsuki Y, Watanabe T, Suga N (1959) Interaction of auditory neurons in response to two sound stimuli in cat. J Neurophysiol 22:603–623

    CAS  PubMed  Google Scholar 

  • Kiang NY, Moxon EC (1974) Tails of tuning curves of auditory-nerve fibers. J Acoust Soc Am 55:620–630

    Article  CAS  PubMed  Google Scholar 

  • Kiang NY, Sachs MB, Peake WT (1967) Shapes of tuning curves for single auditory-nerve fibers. J Acoust Soc Am 42:1341–1342

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita Y, Ogata D, Watanabe Y, Riquimaroux H, Ohta T, Hiryu S (2014) Prey pursuit strategy of Japanese horseshoe bats during an in-flight target-selection task. J Comp Physiol A 200:799–809

    Article  Google Scholar 

  • Klug A, Park TJ, Pollak GD (1995) Glycine and GABA influence binaural processing in the inferior colliculus of the mustache bat. J Neurophysiol 74:1701–1713

    CAS  PubMed  Google Scholar 

  • Koch U, Grothe B (1998) GABAergic and glycinergic inhibition sharpens tuning for frequency modulations in the inferior colliculus of the big brown bat. J Neurophysiol 80:71–82

    CAS  PubMed  Google Scholar 

  • Lu Y, Jen PHS (2001) GABAergic and glycinergic neural inhibition in excitatory frequency tuning of bat inferior collicular neurons. Exp Brain Res 141:331–339

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Jen PHS (2002) Interaction of excitation and inhibition in inferior collicular neurons of the big brown bat, Eptesicus fuscus. Hear Res 169:140–150

    Article  PubMed  Google Scholar 

  • Luo F, Ma J, Li AA, Wu FJ, Chen QC, Zhang SY (2007) Echolocation calls and neurophysiological correlations with auditory response properties in the inferior colliculus of Pipistrellus abramus (Microchiroptera: Vespertilionidae). Zool Stud 46:622–630

    Google Scholar 

  • Mutoh Y, Nagase Y, Kashimori Y (2011) Modulation of frequency-tuning property of subcortical neurons elicited by corticofugal signals in bat’s auditory cortex. BMC Neurosci 12:231

    Article  Google Scholar 

  • Neuweiler G (1980) Auditory processing of echoes: peripheral processing. In: Busnel RG (ed) Animal sonar systems. Plenum, New York, pp 519–548

    Chapter  Google Scholar 

  • Neuweiler G (2003) Evolutionary aspects of bat echolocation. J Comp Physiol A 189:245–256

    CAS  Google Scholar 

  • O’Neill WE, Suga N (1982) Encoding of target range and its representation in the auditory cortex of the mustached bat. J Neurosci 2:17–31

    PubMed  Google Scholar 

  • Odendaal LJ, Jacobs DS, Bishop JM (2014) Sensory trait variation in an echolocating bat suggests roles for both selection and plasticity. BMC Evol Biol 14:60

    Article  PubMed Central  PubMed  Google Scholar 

  • Palombi PS, Backoff PM, Caspary DM (1994) Paired tone facilitation in dorsal cochlear nucleus neurons: a short-term potentiation model testable in vivo. Hearing Res 75:175–183

    Article  CAS  Google Scholar 

  • Peng YT, Xing PP, He J, Sun XD, Zhang JP (2012) The impact of preceding noise on the frequency tuning of rat auditory cortex neurons. BMC Neuroscience 13:70

    Article  PubMed Central  PubMed  Google Scholar 

  • Schnitzler HU (1968) Die Ultraschall-Ortungslaute der Hufeisen-Flederm/iuse (Chiroptera-Rhinolophidae) in verschiedenen Orientierungssituationen. Z vergl Physiol 57:376–408

    Article  Google Scholar 

  • Schnitzler HU (1970) Echoortung bei der Fledermaus Chilonycteris rubiginosa. Z vergl Physiol 68:25–38

    Article  Google Scholar 

  • Schnitzler HU, Denzinger A (2011) Auditory fovea and Doppler shift compensation: adaptations for flutter detection in echolocating bats using CF-FM signals. J Comp Physiol A 197:541–559

    Article  Google Scholar 

  • Simmons JA, Saillant PA, Wotton JM, Haresign T (1995) Composition of biosonar images for target recognition by echolocating bats. Neural Netw 8:1239–1261

    Article  Google Scholar 

  • Suga N (1969) Classification of inferior colliculus neurones of bats in terms of responses to pure tones, FM sounds and noise bursts. J Physiol 200:555–574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suga N (1989) Principles of auditory information-processing derived from neuroethology. J Exp Biol 146:277–286

    CAS  PubMed  Google Scholar 

  • Suga N (1995) Sharpening frequency tuning by inhibition in central auditory system: tribute to Yasuji Katsuki. Neurosci Res 21:287–299

    Article  CAS  PubMed  Google Scholar 

  • Suga N (2009) Echolocation II: neurophysiology. Encycl Neurosci, 801–812

  • Suga N, Tsuzuki K (1985) Inhibition and level-tolerant frequency tuning in the auditory cortex of the mustached bat. J Neurophysiol 53:1109–1145

    CAS  PubMed  Google Scholar 

  • Sutter ML, Schreiner CE, McLean M, O’Connor N, Loftus WC (1999) Organization of inhibitory frequency-receptive fields in cat primary auditory cortex. J Neurophysiol 82:2358–2371

    CAS  PubMed  Google Scholar 

  • Tang J, Pi JH, Wang D, Wu FJ, Chen QC (2004) Effect of weak noise on the frequency tuning of mouse inferior collicular neurons. Zool Res 25:191–197

    Google Scholar 

  • Tang J, Wu FJ, Wang D, Jen PHS, Chen QC (2007) The amplitude sensitivity of mouse inferior collicular neurons in the presence of weak noise. Chin J Physiol 50:187–198

    PubMed  Google Scholar 

  • Tang J, Fu ZY, Jen PHS, Chen Q (2011) Recovery cycles of single-on and double-on neurons in the inferior colliculus of the leaf-nosed bat, Hipposideros armiger. Brain Res 1385:114–126

    Article  CAS  PubMed  Google Scholar 

  • Wehr M, Zador AM (2005) Synaptic mechanisms of forward suppression in rat auditory cortex. Neuron 47:437–445

    Article  CAS  PubMed  Google Scholar 

  • Wright BA (2005) Combined representation for frequency and duration in detection templates for expected signals. J Acoust Soc Am 117:1299–1304

    Article  PubMed  Google Scholar 

  • Wright BA, Dai H (1994) Detection of unexpected tones with short and long durations. J Acoust Soc Am 95:931–938

    Article  CAS  PubMed  Google Scholar 

  • Wright BA, Fitzgerald MB (2004) The time course of attention in a simple auditory detection task. Percept Psychophys 66:508–516

    Article  PubMed  Google Scholar 

  • Wu CH, Jen PHS (2006) GABA-mediated echo duration selectivity of inferior collicular neurons of Eptesicus fuscus, determined with single pulses and pulse-echo pairs. J Comp Physiol 192:985–1002

    Article  CAS  Google Scholar 

  • Yang L, Pollak GD, Resler C (1992) GABAergic circuits sharpen tuning curves and modify response properties in the mustache bat inferior colliculus. J Neurophysiol 68:1760–1774

    CAS  PubMed  Google Scholar 

  • Young ED, Shofner WP, White JA, Robert JM, Voigt HF (1988) Response properties of cochlear nucleus neurons in relationship to physiological mechanisms. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory function: neurobiological bases of hearing. Wiley, New York, pp 277–312

    Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers for commenting on an earlier version of this manuscript. This work was supported by the grants from the National Natural Science Foundation of China (# 31000959, # 31070971), the Natural Science Foundation of Hubei Province (2014CFB653), and a fund from the Central China Normal University (CCNU14A05034). The experiments were conducted with the approval of the Institutional Animal Care and Use Committee of Central China Normal University, Wuhan, Hubei, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi-Cai Chen.

Additional information

J. Tang and Z.-Y. Fu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Fu, ZY., Wei, CX. et al. Effect of echolocation behavior-related constant frequency–frequency modulation sound on the frequency tuning of inferior collicular neurons in Hipposideros armiger . J Comp Physiol A 201, 783–794 (2015). https://doi.org/10.1007/s00359-015-1018-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-015-1018-3

Keywords

Navigation