Skip to main content
Log in

Preference aggregation for couples

  • Original Paper
  • Published:
Social Choice and Welfare Aims and scope Submit manuscript

Abstract

We study the aggregation of a couple’s preferences over their respective jobs when the couple enters a centralized labor market jointly, such as the market for hospital residencies. In such markets couples usually need to submit a joint preference ordering over pairs of jobs and thus we are interested in preference aggregation rules which start with two individual preference orderings over single jobs and produce a preference ordering of pairs of jobs. We first study the Lexicographic and the Rank-Based Leximin aggregation rules, as well as a large class of preference aggregation rules which contains these two rules. Then we propose a smaller family of parametric aggregation rules, the k-Lexi-Pairing rules, which call for a systematic way of compromising between the two partners. The parameter k indicates the degree to which one partner is prioritized, with the most equitable Rank-Based Leximin rule at one extreme and the least equitable Lexicographic rule at the other extreme. Since couples care about geographic proximity, a parametric family of preference aggregation rules which build on the k-Lexi-Pairing rules and express the couple’s preference for togetherness is also identified. We provide axiomatic characterizations of the proposed preference aggregation rules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. A recent paper, Afacan et al. (2022), studies the assignment of arbiters to pairs of agents, where the two agents in a pair have their own individual preferences. Although related to couples’ matching, the arbiter assignment problem differs from it in several aspects; for example, each pair of agents is restricted to be matched to the same arbiter jointly and only pairs of agents are matched, while in couples’ matching there are both couples and singles.

  2. Bossert and Weymark (2004) provide a comprehensive treatment of the literature on social choice with interpersonal utility comparisons.

  3. This is possible because all these rules are neutral, that is, the hospitals’ names don’t matter.

References

  • Afacan MO, Anbarci N, Kibris O (2022) Arbiter assignment. Working paper

  • Arrow KJ (1951) Social choice and individual values. Wiley, New York

    Google Scholar 

  • Bordes G, Le Breton M (1990) Arrovian theorems for economic domains: assignments, matchings and pairings. Soc Choice Welf 7:193–208

    Article  Google Scholar 

  • Bossert W, Weymark JA (2004) Utility in social choice. In: Handbook of utility theory. Springer, Boston, pp 1099–1177

  • Bossert W, Weymark JA (2008) Social choice (new developments). In: The new Palgrave dictionary of economics. Palgrave Macmillan, London, pp 6012–6021

  • Cantala D (2004) Matching markets: the particular case of couples. Econ Bull 3:1–11

    Google Scholar 

  • Delacrétaz D (2019) Stability in matching markets with sizes. Working paper

  • Dutta B, Massó J (1997) Stability of matchings when individuals have preferences over colleagues. J Econ Theory 75:464–475

    Article  Google Scholar 

  • Holzman R, Samet D (2014) Matching of like rank and the size of the core in the marriage problem. Games Econ Behav 88:277–285

    Article  Google Scholar 

  • Jaramillo P, Kayı Ç, Klijn F (2019) The core of roommate problems: size and rank-fairness within matched pairs. Int J Game Theory 48:157–179

    Article  Google Scholar 

  • Kalai E, Ritz Z (1980) Characterization of the private alternatives domains admitting Arrow social welfare functions. J Econ Theory 22:23–36

    Article  Google Scholar 

  • Khare S, Roy S (2018) Stability in matching with couples having non-responsive preferences. Working paper

  • Khare S, Roy S, Storcken T (2018) Stability in matching with couples having responsive preferences. Working paper

  • Klaus B, Klijn F (2005) Stable matchings and preferences of couples. J Econ Theory 121:75–106

    Article  Google Scholar 

  • Klaus B, Klijn F, Massó J (2007) Some things couples always wanted to know about stable matchings (but were afraid to ask). Rev Econ Des 11:175–184

    Google Scholar 

  • Klaus B, Klijn F, Nakamura T (2009) Corrigendum to “Stable matchings and preferences of couples [J. Econ. Theory 121 (1) (2005) 75-106]”. J Econ Theory 144: 2227–2233

  • Klijn F, Walzl M, Kah C (2021) Almost mutually best in matching markets: rank gaps and size of the core. Soc Choice Welf 57:797–816

    Article  Google Scholar 

  • Le Breton M, Weymark JA (2011) Arrovian social choice theory on economic domains. Handbook of social choice and welfare 2:191–299

    Article  Google Scholar 

  • Roth AE (1984) The evolution of the labor market for medical interns and residents: a case study in game theory. J Polit Econ 92:991–1016

    Article  Google Scholar 

  • Roth AE, Peranson E (1999) The redesign of the matching market for American physicians: some engineering aspects of economic design. Am Econ Rev 89:748–780

    Article  Google Scholar 

  • Sethuraman J, Teo CP, Qian L (2006) Many-to-one stable matching: geometry and fairness. Math Oper Res 31:581–596

    Article  Google Scholar 

  • Sidibé AK (2020) Many-to-one matching with sized agents and size-monotonic priorities. Working paper

Download references

Acknowledgements

We are grateful to Flip Klijn for his detailed comments. We would also like to thank Geir Asheim, Walter Bossert, David Cantala, Susumu Cato, Lars Ehlers, Sean Horan, Kohei Kamaga, Bettina Klaus, Ming Li, Dipjyoti Majumdar, Manipushpak Mitra and Jim Schummer, as well as audience members at the 2018 Social Choice and Welfare Conference in Seoul and the 2019 Conference on Economic Design in Budapest for helpful conversations and feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Szilvia Pápai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix


Proof of Theorem 1


Claim1.1 The Rank-Based Leximin rule satisfies Limited Equity.

Proof

Fix \((r_1,r_2) \in R \times R\) and let \(P = \varphi (r_1, r_2)\), where \(\varphi\) is the Rank-Based Leximin Rule. Let \(( h_1, h_2 )\) and \(( h'_1, h'_2 )\) be such that neither pair dominates the other and \(g>g'\). We will show that then \((h'_1,h'_2)P(h_1, h_2)\).


Case 1: Max > Max\('\).


Then \((h'_1,h'_2)P(h_1, h_2)\).


Case 2: Max < Max\('\)


Since \(g>g'\), we must have Min < Min\('\). This implies that \(( h_1, h_2 )\) dominates \(( h'_1, h'_2 )\), which is a contradiction.


Case 3: Max \(=\) Max\('\)


Then if Min\(' \ne\) Min there is a dominance relation between \(( h_1, h_2 )\) and \(( h'_1, h'_2 )\), and thus Min \(=\) Min\('\). This implies that \(g = g'\), which is a contradiction. \(\square\)


Claim 1.2 The Rank-Based Leximin rule satisfies Cross-Dominance.

Proof

Fix \((r_1,r_2) \in R \times R\) and let \(P = \varphi (r_1, r_2)\), where \(\varphi\) is the Rank-Based Leximin Rule. Let \((h_1, h_2)\) and \(( h'_1, h'_2 )\) be such that \(r_{1} ( h_1 )\geqslant r_{2} ( h'_2 )\) and \(r_{2} ( h_2 )\geqslant r_{1} ( h'_1 )\) with at least one inequality. We will show that then \((h'_1, h'_2)P (h_1, h_2)\).


Case 1: Max > Max\('\)


Then \((h'_1, h'_2)P (h_1, h_2)\).


Case 2: Max < Max\('\)


Since Max \(\geqslant r_1(h_1) \geqslant r_2(h'_2)\) and Max \(\geqslant r_2(h_2) \geqslant r_1(h'_1)\), Max \(\geqslant\) Max\('\), which is a contradiction.


Case 3: Max \(=\) Max\('\)


If Min > Min\('\) then \((h'_1, h'_2)P (h_1, h_2)\). Assume that Min \(\leqslant\) Min\('\).


Subcase 3.1: If Min \(= r_{1} ( h_1 )\) then \(r_1( h_1) \leqslant r_2(h'_2)\) and \(r_1( h_1) \leqslant r_1(h'_1)\). Then \(r_1( h_1) = r_2(h'_2)\) and \(r_2( h'_2) \leqslant r_1(h'_1)\). Therefore, Max\(' = r_1(h'_1)\) and, since Max \(= r_2(h_2)\), \(r_2( h_2) = r_1(h'_1)\). This is a contradiction since \(r_1( h_1) = r_2(h'_2)\) implies that \(r_2( h_2) > r_1(h'_1)\).


Subcase 3.2: If Min \(= r_{2} ( h_2 )\) then \(r_2( h_2) \leqslant r_1(h'_1)\) and \(r_2( h_2) \leqslant r_2(h'_2)\). Then \(r_2( h_2) = r_1(h'_1)\) and \(r_1( h'_1) \leqslant r_2(h'_2)\). Therefore, Max\(' = r_2(h'_2)\) and, since Max \(= r_1(h_1)\), \(r_1( h_1) = r_2(h'_2)\). This is a contradiction since \(r_2( h_2) = r_1(h'_1)\) implies that \(r_1( h_1) > r_2(h'_2)\). \(\square\)


Claim 1.3 If a pairing rule satisfies Strong Pareto, Cross-Dominance and Limited Equity, then it is the Rank-Based Leximin rule.

Proof

Fix \((r_1,r_2) \in R \times R\) and let \(P = \varphi (r_1, r_2)\), where \(\varphi\) satisfies Strong Pareto, Cross-Dominance and Limited Equity. Let \(( h_1, h_2 )\) and \(( h'_1, h'_2 )\) be two distinct hospital pairs.

If Max \(=\) Max\('\) and Min > Min\('\), \((h'_1, h'_2)\) dominates \((h_1, h_2)\). Then Dominance implies that \(( h'_1, h'_2 )P ( h_1, h_2 )\).

If Max \(=\) Max\('\) and Min \(=\) Min\('\) then, given that \(( h_1, h_2 ) \ne ( h'_1, h'_2 )\), we have symmetric opposites: \(r_{1} ( h_1 ) = r_{2} ( h'_2 )\), \(r_{2} ( h_2 ) = r_{1} ( h'_1 )\) and \(r_{1} ( h_1) \ne r_{1} ( h'_1 )\). For symmetric opposites, \(r_{1} ( h_1 ) > r_{1} ( h'_1 )\) implies \(( h'_1, h'_2 )P ( h_1, h_2 )\) by convention.

If Max > Max\('\), we consider three cases regarding \(\sum\) and \(\sum '\). Note first that Max \(=\) Min \(+g=\sum -\) Min, and hence 2Max \(=\sum +g\). Similarly, 2Max\('=\sum ' + g'\). Thus Max > Max\('\) if and only if \(\sum +g>\sum '+g'\).


Case 1: \(\sum = \sum '\)


Given that \(\sum = \sum ',\) \(\sum + g > \sum ' + g'\) is equivalent to \(g>g'\), and thus \(( h'_1, h'_2 )P ( h_1, h_2 )\) by Equal-Sum Equity (a weaker version of Limited Equity).


Case 2: \(\sum < \sum '\)


Given that \(\sum < \sum ',\) \(( h'_1, h'_2 )\) does not dominate \(( h_1, h_2 )\). Since Max > Max\('\), \(( h_1, h_2 )\) does not dominate \(( h'_1, h'_2 )\). Now note that \(\sum + g > \sum ' + g'\) implies that \(g > g'\). Thus, given that \(( h_1, h_2 )\) does not dominate \(( h'_1, h'_2 )\) and vice versa, Limited Equity implies that \(( h'_1, h'_2 )P ( h_1, h_2 )\).


Case 3: \(\sum > \sum '\)


Let \(( {\tilde{h}}_1, {\tilde{h}}_2 )\) be such that \(\tilde{\text{ Max }} =\) Max\('+1\) and \(\tilde{\text{ Min }}=\sum -\) Max\('-1\). Note that \(\tilde{\text{ Min }}\) is feasible, since Min\(' \geqslant 1\), \(\sum ' \geqslant\) Max\('+1\) and thus \(\sum > \sum '\) implies that \(\sum >\) Max\(' +1\), and hence \(\tilde{\text{ Min }} > 0\). Observe that \({\tilde{\sum }} = \sum\). We will show next that \({\tilde{g}} \leqslant g\). Given that Max\('<\) Max, Max\('+1 \leqslant\) Max. Then 2Max\('+2 \leqslant 2\)Max \(=\) Max − Min \(+\) Max \(+\) Min. This means that 2Max\(' + 2 - \sum \leqslant\) Max − Min, which is equivalent to \({\tilde{g}} \leqslant g\), since \({\tilde{g}} = \tilde{\text{ Max }} - \tilde{\text{ Min }} =\) Max\(' + 1 - \sum +\) Max\(' + 1 = 2\)Max\(' + 2 - \sum\).

Now note that Max\(' < \tilde{\text{ Max }}\). We will show that Min\(' \leqslant \tilde{\text{ Min }}\). Since \(\sum > \sum '\), \(\sum ' + 1 \leqslant \sum\). Thus, Min\(' +\) Max\(' +1 \leqslant \sum\) and Min\(' \leqslant \sum -\) Max\(' -1 = \tilde{\text{ Min }}\). Therefore, \(( h'_1, h'_2 )\) dominates \(( {\tilde{h}}_1, {\tilde{h}}_2 )\) and Dominance implies that \(( h'_1, h'_2 )P( {\tilde{h}}_1, {\tilde{h}}_2 )\).

If \({\tilde{g}} < g\) then, given that \({\tilde{\sum }} = \sum\), Equal-Sum Equity implies \(( {\tilde{h}}_1, {\tilde{h}}_2 )P( h_1, h_2 )\). If \({\tilde{g}} = g\), either \(( {\tilde{h}}_1, {\tilde{h}}_2 ) = ( h_1, h_2 )\) or \(( {\tilde{h}}_1, {\tilde{h}}_2 )\) and \(( h_1, h_2 )\) are symmetric opposites. Since \(( h'_1, h'_2 )\) dominates \(( {\tilde{h}}_1, {\tilde{h}}_2 )\), it follows that in both cases \(( h'_1, h'_2 )\) dominates \(( h_1, h_2 )\), and therefore \(( h'_1, h'_2 )P ( h_1, h_2 )\) by Dominance. \(\square\)

Finally, note that it follows from Claim 2.1 below that the Rank-Based Leximin rule satisfies Strong Pareto (the \(k=0\) case in Claim 2.1). Together with this result, Claims 1.1, 1.2, and 1.3 prove Theorem 1.


Proof of Theorem 2

Claim 2.1 For all \(k \in \{ 0,\ldots ,q-1 \}\), the k-Lexi-Pairing rule \(\psi ^k\) satisfies Strong Pareto.

Proof

Let \(k \in \{ 0,\ldots ,q-1 \}\). Fix \((r_1,r_2) \in R \times R\) and let \(P^k= \psi ^k(r_1, r_2).\) Let \(( h_1, h_2 )\) and \(( h'_1, h'_2 )\) satisfy \(r_1 ( h_1 )\geqslant r_1 ( {h'_1} )\) and \(r_2 ( h_2 )\geqslant r_2 ( {h'_2} ),\) with at least one strict inequality. We need to show that \(( h'_1, h'_2 )P^k ( h_1, h_2 )\).


Case 1. \(r_1 ( h_1 ) > r_1 ( {h'_1} )\) and \(r_2 ( h_2 ) > r_2 (h'_2)\)


Subcase 1.1: If \(r_1 (h_1)\geqslant r_2 ( {h_2} )- k\) then Max \(=r_1 (h_1) >r_1 ( h'_1)\), and Max \(>r_2 ( h'_2 )- k\). Thus, Max > Max\('\).


Subcase 1.2: If \(r_1 ( {h_1} )< r_2 ( {h_2} )- k\) then Max \(= r_2 (h_2 )- k> r_1(h_1) > r_1 ( h'_1 )\), and Max \(>r_2 ( h'_2 )- k\). Thus, Max > Max\('\).


Case 2. \(r_1 ( h_1 )= r_1 ( {h'_1} )\) and \(r_2 ( h_2 ) > r_2 ( {h'_2} )\)


Subcase 2.1: If \(r_1 ( {h_1} )\geqslant r_2 (h_2)- k\), then Max \(=r_1 ( {h_1} )=r_1 ( h'_1 )\) and Max \(>r_2 (h'_2)-k\). Thus, Max\(' = r_1 ( h'_1 )\) and Max \(=\) Max\('\). Furthermore, Min \(=r_2 ( {h_2} )- k\), Min \(>r_2 ( h'_2 )- k\), and since Max\('=r_1 ( h'_1 )\), Min\('=r_2 ( h'_2 )- k\). Thus, Min > Min\('\).


Subcase 2.2: If \(r_1 ( {h_1} )< r_2 ( {h_2} )- k\) then Max \(=r_2 (h_2)-k\), Max \(>r_2 ( h'_2 )-k > r_1(h_1) = r_1 ( h'_1 )\). Thus, Max > Max\('\).


Case 3. \(r_1 (h_1)> r_1 (h'_1)\) and \(r_2 ( h_2 )= r_2 (h'_2)\)


Subcase 3.1: If \(r_1 ( {h_1} )> r_2 ( {h_2} )- k\) then Max \(=r_1 ( {h_1} ) >r_1 (h'_1)\), and Max \(>r_2 ( h'_2 )-k\). Thus, Max > Max\('\).


Subcase 3.2: If \(r_1 ( {h_1} )\leqslant r_2 ( {h_2} )- k\) then Max \(= r_2(h_2)-k = r_2(h'_2) - k \geqslant r_1(h_1) > r_1(h'_1)\). Thus, Max \(=\) Max\('\). Then Min \(=r_1 ( {h_1} )\) and Min \(>r_1 ( h'_1 )\), which implies that Min > Min\('\).

Therefore, \(( h'_1, h'_2 )P^k ( h_1, h_2 )\) in each case. Since this holds for all \((r_1, r_2) \in R \times R,\) for all \(k \in \{0, \ldots , q-1 \}\), the k-Lexi-Pairing rule satisfies Strong Pareto. \(\square\)


Claim 2.2 For all \(k \in \{ 0,\ldots , q-1 \}\), the k-Lexi-Pairing rule satisfies k-Compromise.

Proof

Let \(k \in \{ 0, \ldots , q-1 \}\). Fix \((r_1,r_2) \in R \times R\) and let \(P^k = \psi ^k(r_1, r_2).\) Let \(( h_1, h_2 )\) and \(( h'_1, h'_2 )\) satisfy \(r_1({h_1}) < r_1(h'_1)\) and \(r_2(h_2) > r_2(h'_2)\).


Case 1: We will show that \(r_1 (h'_1) <r_2 (h_2) - k\) implies \(( h'_1, h'_2 )P^k ( h_1, h_2 )\).

Note first that \(r_2 ( {h_2} )-k>r_1 ( h'_1 ) > r_1 (h_1)\) and thus Max \(=r_2 ( {h_2} )-k\).


Subcase 2.1: If Max\('=r_1 ( h'_1 )\) then \(r_2 ( {h_2} )-k>r_1 ( h'_1 )\) implies Max > Max\('\).


Subcase 2.2: If Max\('=r_2 ( h'_2 )-k\) then \(r_2 ( {h_2} )>r_2 ( h'_2 )\) implies Max > Max\('\).

Hence, \(( h'_1, h'_2 )P^k ( h_1, h_2 )\) in both subcases.


Case 2: We will show that \(r_1(h'_1) > r_2 (h_2) - k\) implies \(( h_1, h_2 )P^k ( h'_1, h'_2 )\).

Note first that \(r_1 ( h'_1 ) + k> r_2(h_2) > r_2 (h'_2)\) and thus Max\('=r_1 ( h'_1 )\).


Subcase 1.1: If Max \(=r_1 ( {h_1} )\) then \(r_1 ( {h_1} )<r_1 ( h'_1 )\) implies Max < Max\('\).


Subcase 1.2: If Max \(=r_2 ( {h_2} )-k\) then \(r_2 ( {h_2} )-k<r_1 ( h'_1 )\) implies Max < Max\('\).

Hence, \((h_1, h_2 )P^k ( h'_1, h'_2 )\) in both subcases.

Therefore, k-Compromise is satisfied in each case. Since this holds for all \((r_1, r_2) \in R \times R,\) for all \(k \in \{0, \ldots , q-1 \}\), the k-Lexi-Pairing rule satisfies k-Compromise. \(\square\)


Claim 2.3 For all \(k \in \{0,\ldots ,q-1\}\), the k-Lexi Pairing rule satisfies k-Threshold-Consistency.

Proof

Let \(k \in \{ 0,\ldots ,q-1 \}\). Fix \((r_1,r_2) \in R \times R\) and let \(P^k= \psi ^k(r_1, r_2).\) Let \(( h_1, h_2 )\) and \(( h'_1, h'_2 )\) satisfy \(r_1 ( {h_1} )< r_1 ( h'_1)\), \(r_2 (h_2) > r_2 (h'_2)\) and \(r_1 (h'_1)= r_2 ( h_2 )-k\).

Then \(r_1 (h_1)< r_1 (h'_1) = r_2 (h_2)-k\) and thus Max = \(r_2(h_2)-k\). Also, \(r_1 (h'_1)= r_2 (h_2) - k > r_2 (h'_2)-k\) and thus Max\(' = r_1(h'_1)\). Therefore, Max \(=\) Max\('\). Moreover, Min \(= r_1(h_1)\) and Min\(' = r_2(h'_2)-k\).


Case 1: \(r_1(h_1) > r_2 ( h'_2 )-k\)

Then Min > Min\('\) and \((h'_1, h'_2)P^k (h_1, h_2)\).


Case 2: \(r_1(h_1) < r_2 ( h'_2 )-k\)

Then Min < Min\('\) and \((h_1, h_2)P^k (h'_1, h'_2)\).


Case 3: \(r_1(h_1) = r_2 ( h'_2 )-k\)

Then Min \(=\) Min\('\) and, since \(r_1(h_1) < r_1(h'_1)\), \((h_1, h_2)P^k (h'_1, h'_2)\).

Therefore, k-Threshold-Consistency is satisfied in each case. Since this holds for all \((r_1, r_2) \in R \times R,\) for all \(k \in \{0, \ldots , q-1 \}\), the k-Lexi-Pairing rule satisfies k-Threshold-Consistency. \(\square\)


Claim 2.4 Let \(k \in \{ 0,\ldots ,q-1 \}\). If a pairing rule satisfies Strong Pareto, k-Compromise, and k-Threshold-Consistency then it is the k-Lexi-Pairing rule.

Proof

Fix \(k \in \{ 0, \ldots , q-1 \}\) and \((r_1,r_2) \in R \times R\). Let \(( h_1, h_2 ), ( h'_1, h'_2) \in H \times H\) such that \(( h_1, h_2 )\ne ( h'_1, h'_2 )\). Let Max, Min, Max\('\) and Min\('\) be defined as we defined them in the definition of k-Lexi-Pairing rules. We consider four scenarios (I-IV) depending on the values these take, and show that if P satisfies Strong Pareto, k-Compromise, and k-Threshold-Consistency then \(P= \psi ^k(r_1, r_2)\).


I. Max \({\varvec{= r_1(h_1)}}\), Min \({\varvec{=r_2(h_2 )-k}}\), Max\({\varvec{' = r_1 (h'_1)}}\), Min\({\varvec{' =r_2 (h'_2)-k}}\)


Case 1: Let Max > Max\('.\) Then \(r_1 ( h_1 ) > r_1 ( {h'_1} )\).


Subcase 1.1: If \(r_2 ( h_2) \geqslant r_2 ( {h'_2} )\) then \(( h'_1, h'_2 )P ( h_1, h_2 )\) by Strong Pareto.


Subcase 1.2: If \(r_2 ( h_2) < r_2 ( {h'_2} )\) then, since Max\(' \geqslant\) Min\('\) implies \(r_1 ( h'_1 ) \geqslant r_2 ( h'_2 )-k\), we have \(r_1 ( h_1) > r_2 ( h'_2 ) - k\). Thus, \(( h'_1, h'_2 )P ( h_1, h_2 )\) by k-Compromise.


Case 2: Let Max \(=\) Max\('\) and Min > Min\('\). Then \(r_1 ( h_1 )=r_1 ( {h'_1} )\) and \(r_2 ( h_2 ) > r_2 (h'_2 )\). Then \(( h'_1, h'_2 )P ( h_1, h_2 )\) by Strong Pareto.


Case 3: Let Max \(=\) Max\('\) and Min \(=\) Min\('\). Then \(r_1 ( h_1 )=r_1 ( {h'_1} )\) and \(r_2 ( h_2 )=r_2 ( {h'_2} )\). Thus, \(( h_1, h_2 )= ( h'_1, h'_2 )\), which is ruled out.


II. Max \({\varvec{= r_2(h_2)-k}}\), Min \({\varvec{=r_1(h_1)}}\), Max\({\varvec{' = r_2 (h'_2)-k}}\), Min\({\varvec{' =r_1 (h'_1)}}\)


Case 1: Let Max > Max\('.\) Then \(r_2 ( h_2 ) > r_2 ( {h'_2} )\).


Subcase 1.1: If \(r_1 ( h_1) \geqslant r_1 ( {h'_1} )\) then \(( h'_1, h'_2 )P ( h_1, h_2 )\) by Strong Pareto.


Subcase 1.2: If \(r_1 ( h_1) < r_1 ( {h'_1} )\) then, since Max\(' \geqslant\) Min\('\) implies \(r_2 ( h'_2 )-k \geqslant r_1 ( h'_1)\), which means \(r_2 ( h'_2 ) \geqslant r_1 ( h'_1)+k\), we have \(r_2 ( h_2) > r_1 ( h'_1 ) + k\). Thus, \(r_1 ( h'_1) < r_2 ( h_2 ) - k\) and \(( h'_1, h'_2 )P ( h_1, h_2 )\) by k-Compromise.


Case 2: Let Max \(=\) Max\('\) and Min > Min\('\). Then \(r_2 ( h_2 )=r_2 ( {h'_2} )\) and \(r_1 ( h_1 ) > r_1 (h'_1 )\). Then \(( h'_1, h'_2 )P ( h_1, h_2 )\) by Strong Pareto.


Case 3: Let Max \(=\) Max\('\) and Min \(=\) Min\('\). Then \(r_2 ( h_2 )=r_2 ( {h'_2} )\) and \(r_1 ( h_1 ) = r_1 (h'_1 )\). Thus, \(( h_1, h_2 )= ( h'_1, h'_2 )\), which is ruled out.


III. Max \({\varvec{= r_2(h_2)-k}}\), Min \({\varvec{=r_1(h_1)}}\), Max\({\varvec{' = r_1 (h'_1)}}\), Min\({\varvec{' =r_2 (h'_2)-k}}\)


Case 1: Let Max > Max\('.\) Then Max > Max\(' \geqslant\) Min\('\) and thus \(r_2 (h_2) > r_2 ( h'_2)\).


Subcase 1.1: If \(r_1 ( h_1 ) \geqslant r_1 (h'_1)\) then \(( h'_1, h'_2 )P ( h_1, h_2 )\) by Strong Pareto.


Subcase 1.2: If \(r_1 ( h_1 ) < r_1 (h'_1)\) then, since Max > Max\('\), \(r_2(h_2) - k > r_1 (h'_1)\) and thus \((h'_1, h'_2) P (h_1, h_2)\) by k-Compromise.


Case 2: Let Max \(=\) Max\('\) and Min > Min\('\). Then Max \(\geqslant\) Min >Min\('\) and thus \(r_2 ( h_2 ) > r_2 (h'_2)\).


Subcase 2.1: If \(r_1 ( h_1 ) \geqslant r_1 (h'_1)\) then \(( h'_1, h'_2 )P ( h_1, h_2 )\) by Strong Pareto.


Subcase 2.2: If \(r_1 ( h_1 )<r_1 (h'_1)\), Max = Max\('\) implies \(r_2 ( {h_2} )-k = r_1 ( h'_1 )\), and Min > Min\('\) implies \(r_1(h_1) > r_2 ( h'_2)-k\), and thus \(( h'_1, h'_2 )P (h_1,h_2)\) by k-Threshold-Consistency.


Case 3: Let Max \(=\) Max\('\) and Min \(=\) Min\('\). Suppose that Max\(' =\) Min\('\). Then \(( h_1, h_2 )= ( h'_1, h'_2 )\), which is ruled out. Thus Max\(' >\) Min\(' =\) Min and \(r_1(h'_1) > r_1(h_1)\). Also, Max > Min\('\) and thus \(r_2 (h_2) > r_2(h'_2)\). Moreover, Max \(=\) Max\('\) implies \(r_1 (h'_1) = r_2(h_2)-k\) and Min \(=\) Min\('\) implies \(r_1 (h_1) = r_2(h'_2)-k\). Thus, \((h_1, h_2 ) P (h'_1, h'_2)\) by k-Threshold-Consistency.


IV. Max \({\varvec{= r_1(h_1)}}\), Min \({\varvec{=r_2(h_2)-k}}\), Max\({\varvec{' = r_2 (h'_2)-k}}\), Min\({\varvec{' =r_1 (h'_1)}}\)


Case 1: Let Max > Max\('.\) Then Max > Min\('\) and thus \(r_1 (h_1) > r_1 ( h'_1)\).


Subcase 1.1: If \(r_2 ( h_2) \geqslant r_2 (h'_2)\) then \(( h'_1, h'_2 )P ( h_1, h_2 )\) by Strong Pareto.


Subcase 1.2: If \(r_2 ( h_2 ) < r_2 (h'_2)\) then, since Max > Max\('\), \(r_1(h_1)> r_2 (h'_2)-k\) and thus \((h'_1, h'_2) P (h_1, h_2)\) by k-Compromise.


Case 2: Let Max \(=\) Max\('\) and Min > Min\('\). Then Max > Min\('\) and thus \(r_1(h_1) > r_1 (h'_1)\).


Subcase 2.1: If \(r_2 ( h_2 ) \geqslant r_2 (h'_2)\) then \(( h'_1, h'_2 )P ( h_1, h_2 )\) by Strong Pareto.


Subcase 2.2: If \(r_2 ( h_2 ) < r_2(h'_2)\), Max = Max\('\) implies \(r_1 (h_1) = r_2 ( h'_2 )-k\), and Min > Min\('\) implies \(r_2(h_2) -k > r_1 ( h'_1)\), and thus \(( h'_1, h'_2 )P ( h_1, h_2 )\) by k-Threshold-Consistency.


Case 3: Let Max \(=\) Max\('\) and Min \(=\) Min\('\). Suppose that Max\(' =\) Min\('\). Then \(( h_1, h_2 )= ( h'_1, h'_2 )\), which is ruled out. Thus Max\(' >\) Min\(' =\) Min and \(r_2(h'_2) > r_2(h_2)\). Also, Max > Min\('\) and thus \(r_1 (h_1) > r_1(h'_1)\). Moreover, Max \(=\) Max\('\) implies \(r_1 (h_1) = r_2(h'_2)-k\) and Min \(=\) Min\('\) implies \(r_1 (h'_1) = r_2(h_2)-k\). Thus, \((h'_1, h'_2 ) P (h_1, h_2)\) by k-Threshold-Consistency. \(\square\)

Claims 2.1, 2.2, 2.3 and 2.4 together prove Theorem 2.


Proof of Theorem 3


Claims 2.1, 2.2. and 2.3 in the proof of Theorem 2 readily generalize to prove that for all \(k,t \in \{ 0,\ldots ,q-~1 \}\) the (k,t)-Lexi-Pairing rule satisfies t-Strong Pareto, (k,t)-Compromise and (k,t)-Threshold-Consistency, respectively. We now verify that for all \(k,t \in \{ 0,\ldots ,q-1 \}\) the (k,t)-Lexi-Pairing rule satisfies t-Tie-Breaking. Fix \(k,t \in \{0, \ldots , q-1\}\), and \((r_1,r_2)\in R \times R\). Suppose that the following holds for two hospital pairs \(( h_1, h_2 )\) and \(( h'_1, h'_2)\): \({\hat{r}}^t_1 (h_1,h_2) = {\hat{r}}^t_1 (h'_1,h'_2)\), \({\hat{r}}^t_2 (h_1,h_2) = {\hat{r}}^t_2 (h'_1,h'_2)\), \((h'_1, h'_2) \in G\) and \((h_1, h_2 )P^{(k,t)} ( h'_1, h'_2 )\), where \(P^{(k,t)} = \psi ^{(k,t)} (r_1, r_2)\). Then Max \(=\) Max\('\), Min \(=\) Min\('\) and since \((h_1, h_2 )P^{(k,t)} ( h'_1, h'_2 )\), 4. in the definition of (k,t)-Lexi-Pairing rules implies that \((h_1,h_2) \in G\). This is a contradiction since \({\hat{r}}^t_1 (h_1,h_2) = {\hat{r}}^t_1 (h'_1,h'_2)\) and \({\hat{r}}^t_2 (h_1,h_2) = {\hat{r}}^t_2 (h'_1,h'_2)\) can only occur if one of the two hospital pairs is incompatible. Therefore, all (k,t)-Lexi-Pairing rules satisfy t-Tie-Breaking.

To prove the converse statement, namely that for all \(k,t \in \{ 0, \ldots , q-1 \}\) if a pairing rule satisfies t-Strong Pareto, (k,t)-Compromise, (k,t)-Threshold-Consistency and t-Tie-Breaking then it is the (k,t)-Couple-Lexi-Pairing rule, we can use Claim 2.4 in the proof of Theorem 2 with the following modifications. In Case 3 of both I. and II., we have \({\hat{r}}^t_1 (h_1,h_2) = {\hat{r}}^t_1 (h'_1,h'_2)\) and \({\hat{r}}^t_2 (h_1,h_2) = {\hat{r}}^t_2 (h'_1,h'_2)\), which cannot be ruled out, unlike in the proof of Theorem 2, but we can infer in this case that one hospital pair is incompatible and the other one is compatible, since otherwise two distinct hospital pairs could not have identical rank numbers. Thus, without loss of generality we can let \((h_1,h_2) \notin G\) and \((h'_1,h'_2) \in G\). Then, given that P satisfies t-Tie-Breaking, \((h'_1, h'_2 )P ( h_1, h_2)\), which complies with 4. in the definition of (k,t)-Couple-Lexi-Pairing rules, since in Case 3 of both I. and II. we have Max \(=\) Max\('\), Min \(=\) Min\('\) and \({\hat{r}}_1 (h_1,h_2) = {\hat{r}}_1 (h'_1,h'_2)\). Furthermore, in Case 3 of both III. and IV. we can apply a similar argument to the above to show that if Max \(=\) Max\('\), Min \(=\) Min\('\) and Max\(' =\) Min\('\) then t-Tie-Breaking implies that \((h'_1, h'_2 )P ( h_1, h_2)\), where \((h'_1, h'_2) \in G\), which complies with 4. in the definition of (k,t)-Couple-Lexi-Pairing rules. This leaves the case of Max \(=\) Max\('\), Min \(=\) Min\('\) and Max\('>\) Min\('\), and the proof can be concluded as shown in Case 3 of III. and IV., respectively, in the proof of Claim 2.4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghouchani, R., Pápai, S. Preference aggregation for couples. Soc Choice Welf 59, 889–923 (2022). https://doi.org/10.1007/s00355-022-01413-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00355-022-01413-7

Navigation