Skip to main content
Log in

Parametric investigation of friction drag reduction in turbulent flow over a flexible wall undergoing spanwise transversal traveling waves

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Active friction drag reduction by spanwise transversal traveling surface waves is investigated experimentally in a fully developed zero-pressure gradient (ZPG) turbulent boundary layer (TBL). The spanwise transversal traveling wave of an aluminum surface is generated by an electromagnetic actuator system. A parametric study focusing on the influence of the wave amplitude (A+) and wave period (T+) is performed to analyze the impact of the wave parameters on drag reduction. Within the range of the parameters investigated, the maximum local drag reduction of 4.5% is found at A+ = 11.8 and T+ = 110. Furthermore, the TBL flows above the wave crest and trough are investigated by phase-locked PIV and µ-PTV measurements. The results evidence that the drag reduction effect is not only enhanced by increasing the amplitude, but also by reducing the period in the range of the current parameters. The turbulence statistics show that the velocity fluctuations and the Reynolds shear stresses in the streamwise and in the wall-normal direction are damped by the traveling surface wave motion in the near-wall region. The outer velocity distribution deviates from the inner scaling based on the actuated friction velocity, i.e., it possesses a slight tendency of a varying slope in the log region. The phase-locked measurements of the velocity profiles above the crest and the trough show that only above the crest the inner scaling property is valid. Above the moving surface a non-zero spanwise secondary flow is induced. The quadrant decomposition of the turbulent productions shows that the sweep and ejection events are weakened.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

A :

Wave amplitude, mm

A + = Au τ/ν :

Normalized wave amplitude

c f :

Friction coefficient

d :

Particle diameter, µm

d + = du τ /ν :

Normalized particle size

f :

Wave frequency, 1/s

f + = fv/u τ 2 :

Normalized wave frequency

l + = lu τ /ν :

Normalized spatial resolution

P :

Probability density function

Re θ :

Reynolds number based on momentum thickness

Re τ :

Reynolds number based on the friction velocity

t :

Laser pulse delay, s

t + = tu τ 2/ν :

Normalized laser pulse delay

T :

Wave period, s

T + = Tu τ 2/ν :

Normalized wave period

u, v, and w :

Streamwise, wall-normal, and spanwise velocity, m/s

u τ :

Friction velocity of the non-actuated flow, m/s

u τ, local :

Friction velocity of the actuated case, m/s

U :

Freestream velocity, m/s

U + = U/u τ :

Normalized streamwise velocity

x, y, and z :

Streamwise, wall-normal, and spanwise distance, mm

y + = yu τ /ν :

Normalized wall distance

urms, vrms :

Root-mean square of the streamwise and wall-normal velocity fluctuation, m/s

τ w :

Wall-shear stress, N/m2

θ :

Momentum thickness, mm

µ :

Dynamic viscosity, kg/(m s)

ν :

Kinematic viscosity, m2/s

DNS:

Direct numerical simulation

DR:

Drag reduction

LES:

Large eddy simulation

PIV:

Particle-image velocimetry

µ-PTV:

Micro-particle tracking velocimetry

TBL:

Turbulent boundary layer

ZPG:

Zero-pressure gradient

References

  • Agostini L, Touber E, Leschziner M (2014) Spanwise oscillatory wall motion in channel flow: drag-reduction mechanisms inferred from dns-predicted phase-wise property variations at Re τ = 1000. J Fluid Mech 743:606–635

    Article  Google Scholar 

  • Akhavan R, Jung W, Mangiavacchi N (1993) Turbulence control in wall-bounded flows by spanwise oscillations. Advances in turbulence iv. Springer, Berlin, pp 299–303

    Google Scholar 

  • Atkinson C, Buchmann NA, Amili O, Soria J (2014) On the appropriate filtering of PIV measurements of turbulent shear flows. Exp Fluids 55:1–15

    Article  Google Scholar 

  • Bai H, Zhou Y, Zhang W, Xu S, Wang Y, Antonia R (2014) Active control of a turbulent boundary layer based on local surface perturbation. J Fluid Mech 750:316–354

    Article  Google Scholar 

  • Baron A, Quadrio M (1995) Turbulent drag reduction by spanwise wall oscillations. Appl Sci Res 55:311–326

    Article  MATH  Google Scholar 

  • Bechert D, Bruse M, Hage W, Van der Hoeven JT, Hoppe G (1997) Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. J Fluid Mech 338:59–87

    Article  Google Scholar 

  • Benedict L, Gould R (1996) Towards better uncertainty estimates for turbulence statistics. Exp Fluids 22:129–136

    Article  Google Scholar 

  • Choi K-S (2002) Near-wall structure of turbulent boundary layer with spanwise-wall oscillation. Phys Fluids 14:2530–2542

    Article  MATH  Google Scholar 

  • Choi H, Moin P, Kim J (1994) Active turbulence control for drag reduction in wall-bounded flows. J Fluid Mech 262:75–110

    Article  MATH  Google Scholar 

  • Choi K-S, Jukes T, Whalley R (2011) Turbulent boundary-layer control with plasma actuators. Philos Trans R Soc Lond A Math Phys Eng Sci 369:1443–1458

    Article  Google Scholar 

  • Crocker JC, Grier DG (1996) Methods of digital video microscopy for colloidal studies. J Colloid Interface Sci 179:298–310

    Article  Google Scholar 

  • Di Cicca GM, Iuso G, Spazzini PG, Onorato M (2002) Particle image velocimetry investigation of a turbulent boundary layer manipulated by spanwise wall oscillations. J Fluid Mech 467:41–56

    Article  MATH  Google Scholar 

  • Du Y, Karniadakis GE (2000) Suppressing wall turbulence by means of a transverse traveling wave. Science 288:1230–1234

    Article  Google Scholar 

  • Du Y, Symeonidis V, Karniadakis G (2002) Drag reduction in wall-bounded turbulence via a transverse travelling wave. J Fluid Mech 457:1–34

    Article  MathSciNet  MATH  Google Scholar 

  • Fernholz H, Finley P (1996) The incompressible zero-pressure-gradient turbulent boundary layer: an assessment of the data. Prog Aerosp Sci 32:245–311

    Article  Google Scholar 

  • Gatti D, Güttler A, Frohnapfel B, Tropea C (2015) Experimental assessment of spanwise-oscillating dielectric electroactive surfaces for turbulent drag reduction in an air channel flow. Exp Fluids 56:1–15

    Article  Google Scholar 

  • Gouder K, Potter M, Morrison JF (2013) Turbulent friction drag reduction using electroactive polymer and electromagnetically driven surfaces. Exp Fluids 54:1–12

    Article  Google Scholar 

  • Huang L, Fan B, Dong G (2010) Turbulent drag reduction via a transverse wave traveling along streamwise direction induced by Lorentz force. Phys Fluids 22:015103

    Article  MATH  Google Scholar 

  • Hurst E, Yang Q, Chung YM (2014) The effect of Reynolds number on turbulent drag reduction by streamwise travelling waves. J Fluid Mech 759:28–55

    Article  Google Scholar 

  • Itoh M, Tamano S, Yokota K, Taniguchi S (2006) Drag reduction in a turbulent boundary layer on a flexible sheet undergoing a spanwise traveling wave motion. J Turbul 7:1–17

    Article  Google Scholar 

  • Jung W, Mangiavacchi N, Akhavan R (1992) Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Phys Fluids A Fluid Dyn 4:1605–1607

    Article  Google Scholar 

  • Kähler C, Scholz U, Ortmanns J (2006) Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of long-distance micro-PIV. Exp Fluids 41:327–341

    Article  Google Scholar 

  • Klumpp S, Meinke M, Schröder W (2010) Drag reduction by spanwise transversal surface waves. J Turbul 11:1–13

    Article  MATH  Google Scholar 

  • Klumpp S, Meinke M, Schröder W (2011) Friction drag variation via spanwise transversal surface waves. Flow Turbul Combust 87:33–53

    Article  MATH  Google Scholar 

  • Koh SR, Meysonnat PS, Statnikov V, Meinke M, Schröder W (2015) Dependence of turbulent wall-shear stress on the amplitude of spanwise transversal surface waves. Comput Fluids 119:261–275

    Article  MathSciNet  Google Scholar 

  • Laadhari F, Skandaji L, Morel R (1994) Turbulence reduction in a boundary layer by a local spanwise oscillating surface. Phys Fluids 6:3218–3220

    Article  Google Scholar 

  • Li W, Jessen W, Roggenkamp D, Klaas M, Silex W, Schiek M, Schröder W (2015) Turbulent drag reduction by spanwise traveling ribbed surface waves. Eur J Mech B Fluids 53:101–112

    Article  Google Scholar 

  • Li W, Roggenkamp D, Jessen W, Klaas M, Schröder W (2016) Reynolds number effects on the fluctuating velocity distribution in wall-bounded shear layers. Meas Sci Technol 28:015302

    Article  Google Scholar 

  • Malik N, Dracos T, Papantoniou D (1993) Particle tracking velocimetry in three-dimensional flows. Exp Fluids 15:279–294

    Article  Google Scholar 

  • Meysonnat PS, Koh SR, Roidl B, Schröder W (2016) Impact of transversal traveling surface waves in a non-zero pressure gradient turbulent boundary layer flow. Appl Math Comput 272:498–507

    MathSciNet  Google Scholar 

  • Nakanishi R, Mamori H, Fukagata K (2012) Relaminarization of turbulent channel flow using traveling wave-like wall deformation. Int J Heat Fluid Flow 35:152–159

    Article  Google Scholar 

  • Quadrio M, Ricco P (2004) Critical assessment of turbulent drag reduction through spanwise wall oscillations. J Fluid Mech 521:251–271

    Article  MATH  Google Scholar 

  • Quadrio M, Ricco P, Viotti C (2009) Streamwise-travelling waves of spanwise wall velocity for turbulent drag reduction. J Fluid Mech 627:161–178

    Article  MathSciNet  MATH  Google Scholar 

  • Roggenkamp D, Jessen W, Li W, Klaas M, Schröder W (2015) Experimental investigation of turbulent boundary layers over transversal moving surfaces. CEAS Aeronaut J 6:471–484

    Article  Google Scholar 

  • Shen L, Zhang X, Yue DK, Triantafyllou MS (2003) Turbulent flow over a flexible wall undergoing a streamwise travelling wave motion. J Fluid Mech 484:197–221

    Article  MATH  Google Scholar 

  • Tamano S, Itoh M (2012) Drag reduction in turbulent boundary layers by spanwise traveling waves with wall deformation. J Turbul 13:1–26

    Article  MathSciNet  Google Scholar 

  • Tomiyama N, Fukagata K (2013) Direct numerical simulation of drag reduction in a turbulent channel flow using spanwise traveling wave-like wall deformation. Phys Fluids 25:105–115

    Article  Google Scholar 

  • Touber E, Leschziner MA (2012) Near-wall streak modification by spanwise oscillatory wall motion and drag-reduction mechanisms. J Fluid Mech 693:150–200

    Article  MATH  Google Scholar 

  • Wallace JM (2016) Quadrant analysis in turbulence research: history and evolution. Annu Rev Fluid Mech 48:131–158

    Article  MathSciNet  MATH  Google Scholar 

  • Westerweel J (1997) Fundamentals of digital particle image velocimetry. Meas Sci Technol 8:1379

    Article  Google Scholar 

  • Whalley RD, Choi K-S (2014) Turbulent boundary-layer control with plasma spanwise travelling waves. Exp Fluids 55:1–16

    Article  Google Scholar 

  • Zhao H, Wu J-Z, Luo J-S (2004) Turbulent drag reduction by traveling wave of flexible wall. Fluid Dyn Res 34:175–198

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The support of this research by the Deutsche Forschungsgemeinschaft DFG in the frame of FOR1779 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenfeng Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Roggenkamp, D., Hecken, T. et al. Parametric investigation of friction drag reduction in turbulent flow over a flexible wall undergoing spanwise transversal traveling waves. Exp Fluids 59, 105 (2018). https://doi.org/10.1007/s00348-018-2559-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-018-2559-3

Navigation