Skip to main content
Log in

Simultaneous schlieren photography and soot foil in the study of detonation phenomena

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The use of schlieren photography has been essential in unravelling the complex nature of high-speed combustion phenomena, but its line-of-sight integration makes it difficult to decisively determine the nature of multi-dimensional combustion wave propagation. Conventional schlieren alone makes it impossible to determine in what plane across the channel an observed structure may exist. To overcome this, a technique of simultaneous high-speed schlieren photography and soot foils was demonstrated that can be applied to the study of detonation phenomena. Using a kerosene lamp, soot was deposited on a glass substrate resulting in a semi-transparent sheet through which schlieren source light could pass. In order to demonstrate the technique, experiments were carried out in mixtures of stoichiometric hydrogen–oxygen at initial pressures between 10 and 15 kPa. Compared to schlieren imaging obtained without a sooted foil, high-speed video results show schlieren images with a small reduction of contrast with density gradients remaining clear. Areas of high temperature cause soot lofted from the foil to incandescence strongly, resulting in the ability to track hot spots and flame location. Post-processing adjustments were demonstrated to make up for camera sensitivity limitations to enable viewing of schlieren density gradients. High-resolution glass soot foils were produced that enable direct coupling of schlieren video to triple-point trajectories seen on the soot foils, allowing for the study of three-dimensional propagation mechanisms of detonation waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Avallone E, Baumeister T, Sadegh A (eds) (2007) Standard handbook for mechanical engineers, 11th edn. McGraw-Hill, New York

    Google Scholar 

  • Boeck LR, Kellenberger M, Rainsford G, Ciccarelli G (2017) Simultaneous OH-PLIF and schlieren imaging of flame acceleration in an obstacle-laden channel. Proc Combust Inst 36(2):2807–2814

    Article  Google Scholar 

  • Browne S, Ziegler J, Shepherd JE (2015) Numerical solution methods for shock and detonation jump conditions, Report No. FM2006.006. California Institute of Technology, Pasadena

  • Chapman DL (1899) On the rate of explosion in gases. Philos Mag Ser 5 47(284):90–104

    Article  MATH  Google Scholar 

  • Ciccarelli G, Dorofeev S (2008) Flame acceleration and transition to detonation in ducts. Prog Energy Combust Sci 34(4):499–550

    Article  Google Scholar 

  • Ciccarelli G, Johansen CT, Parravani M (2010) The role of shock–flame interactions on flame acceleration in an obstacle laden channel. Combust Flame 157(11):2125–2136

    Article  Google Scholar 

  • Cross M, Ciccarelli G, Thibault P (2015) Detonation hazard classification based on the critical orifice plate diameter for detonation propagation. In: Proceedings of the 25th international colloquium on the dynamics of explosions and reactive systems, Paper 241. Leeds. http://www.icders.org/ICDERS2015/abstracts/ICDERS2015-241.pdf

  • Denisov YN, Troshin YK (1961) On the mechanism of detonative combustion. Symp Combust 8(1):600–610

    Article  Google Scholar 

  • Döring W (1943) Über detonationsvorgang in gasen (On the detonation process in gases). Ann Phys 43:421–436

    Article  Google Scholar 

  • Gamezo VN, Ogawa T, Oran ES (2007) Numerical simulations of flame propagation and DDT in obstructed channels filled with hydrogen–air mixture. Proc Combust Inst 31(2):2463–2471

    Article  Google Scholar 

  • Gaydon AG (1957) The spectroscopy of flames, 2nd edn. Champman and Hall Ltd, London

    Google Scholar 

  • Goodwin DG, Moffat HK, Speth RL (2015) Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. Version 2.2.0. doi:10.5281/ZENODO.48735

  • Ishii K, Morita K, Okitsu Y, Sayama S, Kataoka H (2013) Cellular pattern formation in detonation propagation. Proc Combust Inst 34(2):1903–1911

    Article  Google Scholar 

  • Jouguet E (1905) Sur la propagation des réactions chimiques dans les gaz (On the propagation of chemical reactions in gases). J Math Pures Appl 1:347–425

    MATH  Google Scholar 

  • Kaneshige M (1997) Detonation spectroscopy: results, problems, and directions. http://shepherd.caltech.edu/EDL/publications/reprints/spectrum-kanshige97.pdf. Accessed 7 Apr 2017

  • Kellenberger M, Ciccarelli G (2015) Propagation mechanisms of supersonic combustion waves. Proc Combust Inst 35(2):2109–2116

    Article  Google Scholar 

  • Lam AKW, Austin J, Pintgen F, Wintenberger E, Shepherd JE, Inaba K, Matsuo A (2003) On the mechanism of soot track formation: experimental study. In: Proceedings of the 19th international colloquium on the dynamics of explosion and reactive systems, Paper 81. Hakone. http://www.icders.org/ICDERS2003/PapersICDERS2003/ICDERS2003-81.pdf

  • Lee JHS (2008) The detonation phenomenon. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lu FK, Braun EM (2014) Rotating detonation wave propulsion: experimental challenges, modeling, and engine concepts. J Propuls Power 30(5):1125–1142

    Article  Google Scholar 

  • Mach E, Sommer J (1877) Über die Fortpflanzungsgeschwindigkeit von Explosionsschallwellen (On the propagation speed of explosive sound waves). Sitzungsberichte der Akad. der Wissenschaften Wien 75:101–130

    Google Scholar 

  • Maley L, Bhattacharjee R, Lau-Chapdelaine S-M, Radulescu MI (2015) Influence of hydrodynamic instabilities on the propagation mechanism of fast flames. Proc Combust Inst 35(2):2117–2126

    Article  Google Scholar 

  • Mallard E-F, Le Chatelier HL (1883) Recherches experimentales et theoriques sur la combustion des melanges gaseoux explosifs (Experimental and theoretical research on the combustion of explosive gas mixtures). Les Ann des Mines 8(4):274–568

    Google Scholar 

  • Oppenheim AK (1985) Dynamic features of combustion. Philos Trans R Soc London Ser A 315(1534):471–508

    Article  Google Scholar 

  • Peraldi O, Knystautas R, Lee JH (1988) Criteria for transition to detonation in tubes. Symp Combust 21(1):1629–1637

    Article  Google Scholar 

  • Pintgen F, Shepherd JE (2009) Detonation diffraction in gases. Combust Flame 156(3):665–677

    Article  Google Scholar 

  • Roy GD, Frolov SM, Borisov AA, Netzer DW (2004) Pulse detonation propulsion: challenges, current status, and future perspective. Prog Energy Combust Sci 30(6):545–672

    Article  Google Scholar 

  • Schefer RW, Kulatilaka WD, Patterson BD, Settersten TB (2009) Visible emission of hydrogen flames. Combust Flame 156(6):1234–1241

    Article  Google Scholar 

  • Schultz E, Shepherd J (2000) Validation of detailed reaction mechanisms for detonation simulation, Report No. FM99-05. California Institute of Technology, Pasadena

  • Settles GS (2001) Schlieren and shadowgraph techniques. Springer, Berlin

  • Strehlow R (1969) The nature of transverse waves in detonations. Astronaut Acta 14:539–549

    Google Scholar 

  • Teodorczyk A, Lee JHS, Knystautas R (1989) Propagation mechanism of quasi-detonations. Symp Combust 22(1):1723–1731

    Article  Google Scholar 

  • von Neuman J (1942) Theory of detonation waves. ACS Publications, Princeton

    Google Scholar 

  • Wagner HG (1957) Spectra of the detonation of oxygen with H2, CO and hydrocarbons. Symp Combust 6(1):366–371

    Article  Google Scholar 

  • White DR (1961) Turbulent structure of gaseous detonation. Phys Fluids 4(4):465–480

    Article  MATH  Google Scholar 

  • Zel’dovich YB (1940) К тeopии pacпpocтpaнeния дeтoнaции в гaзooбpaзныx cиcтeмax (On the theory of the propagation of detonation in gaseous systems). J Exp Theor Phys 10(5):543–568

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Kellenberger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kellenberger, M., Ciccarelli, G. Simultaneous schlieren photography and soot foil in the study of detonation phenomena. Exp Fluids 58, 138 (2017). https://doi.org/10.1007/s00348-017-2420-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-017-2420-0

Navigation