Skip to main content
Log in

High-speed axial-scanning wide-field microscopy for volumetric particle tracking velocimetry

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The ability to understand and visualize complex flow structures in microfluidic and biological systems relies heavily on the resolving power of three-dimensional (3D) particle velocimetry techniques. We propose a simple technique for acquiring volumetric particle information with the potential for microsecond time resolution. By utilizing a fast varifocal lens in a modified wide-field microscope, we capture both volumetric and planar information with microsecond time resolution. The technique is demonstrated by tracking particle motions in the complex, three-dimensional flow in a high Reynolds number laminar flow at a branching arrow-shaped junction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ault JT, Fani A, Chen KK, Shin S, Gallaire F, Stone HA (2016) Vortex-breakdown-induced particle capture in branching junctions. Phys Rev Lett 117(8):084501

  • Chen BC, Legant WR, Wang K, Shao L, Milkie DE, Davidson MW, Janetopoulos C, Wu XS, Hammer JA, Liu Z, English BP, Mimori-Kiyosue Y, Romero DP, Ritter AT, Lippincott-Schwartz J, Fritz-Laylin L, Mullins RD, Mitchell DM, Bembenek JN, Reymann AC, Bohme R, Grill SW, Wang JT, Seydoux G, Tulu US, Kiehart DP, Betzig E (2014) Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346(6208):1257,998. doi:10.1126/science.1257998

  • Chen KK, Rowley CW, Stone HA (2015) Vortex dynamics in a pipe T-junction: recirculation and sensitivity. Phys Fluids 27:034107

    Article  Google Scholar 

  • Choi YS, Lee SJ (2009) Three-dimensional volumetric measurement of red blood cell motion using digital holographic microscopy. Appl Opt 48(16):2983. doi:10.1364/ao.48.002983

    Article  Google Scholar 

  • Cierpka C, Kähler CJ (2011) Particle imaging techniques for volumetric three-component (3d3c) velocity measurements in microfluidics. J Vis 15(1):1–31. doi:10.1007/s12650-011-0107-9

    Article  Google Scholar 

  • De K, Masilamani V (2013) Image sharpness measure for blurred images in frequency domain. Proc Eng 64:149–158

    Article  Google Scholar 

  • Dennis DJC, Nickels TB (2011) Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. part 2. long structures. J Fluid Mech 673:218–244. doi:10.1017/s0022112010006336

    Article  MATH  Google Scholar 

  • Duocastella M, Sun B, Arnold CB (2012) Simultaneous imaging of multiple focal planes for three-dimensional microscopy using ultra-high-speed adaptive optics. J Biomed Opt 17(5):050,505. doi:10.1117/1.jbo.17.5.050505

    Article  Google Scholar 

  • Duocastella M, Vicidomini G, Diaspro A (2014) Simultaneous multiplane confocal microscopy using acoustic tunable lenses. Opt Express 22(16):19,293. doi:10.1364/oe.22.019293

    Article  Google Scholar 

  • Elsinga GE, Scarano F, Wieneke B, van Oudheusden BW (2006) Tomographic particle image velocimetry. Exp Fluids 41(6):933–947. doi:10.1007/s00348-006-0212-z

    Article  Google Scholar 

  • Grothe RL, Dabiri D (2008) An improved three-dimensional characterization of defocusing digital particle image velocimetry (DDPIV) based on a new imaging volume definition. Meas Sci Technol 19(6):065,402. doi:10.1088/0957-0233/19/6/065402

    Article  Google Scholar 

  • Klein SA, Moran JL, Frakes DH, Posner JD (2012) Three-dimensional three-component particle velocimetry for microscale flows using volumetric scanning. Meas Sci Technol 23(8):085,304. doi:10.1088/0957-0233/23/8/085304

    Article  Google Scholar 

  • McLeod E, Arnold CB (2007) Mechanics and refractive power optimization of tunable acoustic gradient lenses. J Appl Phys 102(3):033,104. doi:10.1063/1.2763947

    Article  Google Scholar 

  • Mermillod-Blondin A, McLeod E, Arnold CB (2008) High-speed varifocal imaging with a tunable acoustic gradient index of refraction lens. Opt Lett 33(18):2146. doi:10.1364/ol.33.002146

    Article  Google Scholar 

  • Olivier N, Mermillod-Blondin A, Arnold CB, Beaurepaire E (2009) Two-photon microscopy with simultaneous standard and extended depth of field using a tunable acoustic gradient-index lens. Opt Lett 34(11):1684. doi:10.1364/ol.34.001684

    Article  Google Scholar 

  • Park JS, Choi CK, Kihm KD (2004) Optically sliced micro-PIV using confocal laser scanning microscopy (CLSM). Exp Fluids 37(1):105–119. doi:10.1007/s00348-004-0790-6

    Article  Google Scholar 

  • Park JS, Kihm KD (2005) Three-dimensional micro-PTV using deconvolution microscopy. Exp Fluids 40(3):491–499. doi:10.1007/s00348-005-0090-9

    Article  Google Scholar 

  • Pereira F, Gharib M (2002) Defocusing digital particle image velocimetry and the three-dimensional characterization of two-phase flows. Meas Sci Technol 13(5):683–694. doi:10.1088/0957-0233/13/5/305

    Article  Google Scholar 

  • Prasad AK (2000) Stereoscopic particle image velocimetry. Exp Fluids 29(2):103–116. doi:10.1007/s003480000143

    Article  Google Scholar 

  • Vettenburg T, Dalgarno HIC, Nylk J, Coll-Lladó C, Ferrier DEK, Čižmár T, Gunn-Moore FJ, Dholakia K (2014) Light-sheet microscopy using an airy beam. Nature Methods 11(5):541–544. doi:10.1038/nmeth.2922

    Article  Google Scholar 

  • Vigolo D, Griffiths IM, Radl S, Stone HA (2013) An experimental and theoretical investigation of particle-wall impacts in a T-junction. J Fluid Mech 727:236–255. doi:10.1017/jfm.2013.200

    Article  MATH  Google Scholar 

  • Vigolo D, Radl S, Stone HA (2014) Unexpected trapping of particles at a T-junction. Proc Natl Acad Sci 111(13):4770–4775. doi:10.1073/pnas.1321585111

    Article  Google Scholar 

  • Wereley ST, Meinhart CD (2010) Recent advances in micro-particle image velocimetry. Annu Rev Fluid Mech 42(1):557–576. doi:10.1146/annurev-fluid-121108-145427

    Article  Google Scholar 

  • Westerweel J, Elsinga GE, Adrian RJ (2013) Particle image velocimetry for complex and turbulent flows. Annu Rev Fluid Mech 45(1):409–436. doi:10.1146/annurev-fluid-120710-101204

    Article  MATH  MathSciNet  Google Scholar 

  • Willert CE, Gharib M (1992) Three-dimensional particle imaging with a single camera. Exp Fluids doi:10.1007/bf00193880

  • Zhang NF, Postek MT, Larrabee RD, Vladar AE, Keery WJ, Jones SN (1999) Image sharpness measurement in the scanning electron microscope-part III. Scanning 21(4):246–252

    Article  Google Scholar 

  • Zong W, Zhao J, Chen X, Lin Y, Ren H, Zhang Y, Fan M, Zhou Z, Cheng H, Sun Y, Chen L (2014) Large-field high-resolution two-photon digital scanned light-sheet microscopy. Cell Res 25(2):254–257. doi:10.1038/cr.2014.124

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank TAG Optics Inc., David Amrhein, and Christian Therlault for technical support, and gratefully acknowledge financial support from the NSF (Grant No. CMMI-1235291) and the Ministry of Education, Republic of China. T-H. Chen thanks Marcus Hultmark and Romain Fardel for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. B. Arnold.

Additional information

NSF (Grant No. CMMI-1235291) and the Ministry of Education, Republic of China.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, TH., Ault, J.T., Stone, H.A. et al. High-speed axial-scanning wide-field microscopy for volumetric particle tracking velocimetry. Exp Fluids 58, 41 (2017). https://doi.org/10.1007/s00348-017-2316-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-017-2316-z

Keywords

Navigation