Skip to main content
Log in

Schlieren technique in soap film flows

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

We propose the use of the Schlieren technique as a tool to analyse the flows in soap film tunnels. The technique enables to visualize perturbations of the film produced by the interposition of an object in the flow. The variations of intensity of the image are produced as a consequence of the deviations of the light beam traversing the deformed surfaces of the film. The quality of the Schlieren image is compared to images produced by the conventional interferometric technique. The analysis of Schlieren images of a cylinder wake flow indicates that this technique enables an easy visualization of vortex centers. Post-processing of series of two successive images of a grid turbulent flow with a dense motion estimator is used to derive the velocity fields. The results obtained with this self-seeded flow show good agreement with the statistical properties of the 2D turbulent flows reported on the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Amarouchene Y, Kellay H (2004) Batchelor scaling in fast-flowing soap films. Phys Rev Lett 93:214504

    Article  Google Scholar 

  • Auliel MI, Castro F, Sosa R, Artana G (2015) Gravity-driven soap film dynamics in subcritical regimes. Phys Rev E 92:043009

    Article  Google Scholar 

  • Auliel MI (2016) Estudio de leyes de escala turbulentas y su vínculo con propiedades macroscópicas de flujos. PhD thesis, Departamento de Ingeniería, UBA, Ciudad Autónoma de Buenos Aires, Argentina

  • Belmonte A, Martin B, Goldburg WI (2000) Experimental study of taylors hypothesis in a turbulent soap film. Phys Fluids 12(4):835–845

    Article  MATH  Google Scholar 

  • Benzi R, Ciliberto S, Tripiccione R, Baudet C, Massaioli F, Succi S (1993) Extended self-similarity in turbulent flows. Phys Rev E 48:R29–R32

    Article  Google Scholar 

  • Berthold K, Horn P, Schunck BG (1981) Determining optical flow. Artif Intell 17:185–203

    Article  Google Scholar 

  • Black MJ, Anandan P (1996) The robust estimation of multiple motions: parametric and piecewise-smooth flow fields. Comput Vis Image Underst 63(1):75–104

    Article  Google Scholar 

  • Boffetta G, Celani A, Musacchio S, Vergassola M (2002) Intermittency in two-dimensional ekman-navier-stokes turbulence. Phys Rev E 66(2):026304

    Article  MathSciNet  Google Scholar 

  • Cabaleiro JM, Aider JL, Artana G, Wesfreid JE (2013) Single camera time-resolved 3d tomographic reconstruction of a pulsed gas jet. J Vis 16(4):263–274

    Article  Google Scholar 

  • Chomaz JM (2001) The dynamics of a viscous soap film with soluble surfactant. J Fluid Mech 442:387–409

    Article  MATH  MathSciNet  Google Scholar 

  • Couder Y, Chomaz JM, Rabaud M (1989) On the hydrodynamics of soap films. Phys D Nonlinear Phenom 37(1):384–405

    Article  Google Scholar 

  • Courregelongue J (1929) Sur lexistence de deux familles de tourbillonsa larriére des solides immergés. CR Acad Sci Paris 189:972–974

    MATH  Google Scholar 

  • Daniel WB, Rutgers MA (2002) Topology of two-dimensional turbulence. Phys Rev Lett 89(13):134502

    Article  Google Scholar 

  • Dérian P, Héas P, Herzet C, Mémin E (2013) Wavelets and optical flow motion estimation. Numer Math Theory Methods Appl 6(01):116–137

    MATH  MathSciNet  Google Scholar 

  • Frisch U, Kolmogorov AN (1996) Turbulence: the legacy of A. N. Kolmogorov. Cambridge University Press

  • Goldstein R (1996) Fluid mechanics measurements. CRC Press

  • Greffier O, Amarouchene Y, Kellay H (2002) Thickness fluctuations in turbulent soap films. Phys Rev Lett 88:194101

    Article  Google Scholar 

  • Hargather MJ, Lawson MJ, Settles GS, Weinstein LM (2011) Seedless velocimetry measurements by schlieren image velocimetry. AIAA J 49(3):611–620

    Article  Google Scholar 

  • Heitz D, Mémin E, Schnörr C (2010) Variational fluid flow measurements from image sequences: synopsis and perspectives. Exp Fluids 48(3):369–393

    Article  Google Scholar 

  • Huang MJ, Wen CY, Lee IC, Tsai CH (2004) Air-damping effects on developing velocity profiles in flowing soap films. Phys Fluids 16(11):3975–3982

    Article  MATH  Google Scholar 

  • Isenberg C (1992) The science of soap films and soap bubbles. General Publishing Company, dover edition edition, Don Mills

    MATH  Google Scholar 

  • Jonassen DR, Settles GS, Tronosky MD (2006) Schlieren piv for turbulent flows. Opt Lasers Eng 44(3):190–207

    Article  Google Scholar 

  • Jun Y, Wu XL (2005) Large-scale intermittency in two-dimensional driven turbulence. Phys Rev E 72:035302

    Article  Google Scholar 

  • Kellay H, Wu XL, Goldburg WI (1998) Vorticity measurements in turbulent soap films. Phys Rev Lett 80:277–280

    Article  Google Scholar 

  • Kellay H, Wu XL,  Goldburg WI (1995) Experiments with turbulent soap films. Phys. Rev. Lett. 74:3975–3978 1995. s

  • Kraichnan RH (1967) Inertial ranges in 2 dimensional turbulence. Phys Fluids 10:1417

    Article  MathSciNet  Google Scholar 

  • Larchevêque M (1993) Pressure field, vorticity field, and coherent structures in two-dimensional incompressible turbulent flows. Theor Comput Fluid Dynam 5(4):215–222

    Article  MATH  Google Scholar 

  • Mémin E, Pérez P (2002) Hierarchical estimation and segmentation of dense motion fields. Int J Comput Vis 46(2):129–155

    Article  MATH  Google Scholar 

  • Paret J, Tabeling P (1998) Intermittency in the two-dimensional inverse cascade of energy: experimental observations. Phys Fluids (1994-present) 0(12):3126–3136

  • Prasad V, Weeks ER (2009) Flow fields in soap films: relating viscosity and film thickness. Phys Rev E 80(2):026309

    Article  Google Scholar 

  • Quénot GM (1992) Theorthogonal algorithm’for optical flow detection using dynamic programming. In: Acoustics, speech, and signal processing, 1992. ICASSP-92., 1992 IEEE International Conference on, vol 3, pp 249–252. IEEE

  • Quénot GM (1996) Computation of optical flow using dynamic programming. In: IAPR Workshop on Machine Vision Applications, pp 249–252

  • Quénot GM, Pakleza J, Kowalewski TA (1998) Particle image velocimetry with optical flow. Exp Fluids 25(3):177–189

    Article  Google Scholar 

  • Rivera M, Vorobieff P, Ecke RE (1998) Turbulence in flowing soap films: velocity, vorticity, and thickness fields. Phys Rev Lett 81(7):1417

    Article  Google Scholar 

  • Rivera M, Belmonte A, Goldburg WI, Wu XL, Kellay H (1998) Optical fiber velocimetry: a technique for measuring velocity in two-dimensional flows. Revi Sci Instr 69(9):3215–3222

    Article  Google Scholar 

  • Rivera M, Wu XL, Yeung C (2001) Universal distribution of centers and saddles in two-dimensional turbulence. Phys Rev Lett 87:044501

    Article  Google Scholar 

  • Rivera M, Aluie H, Ecke RE (2014) The direct enstrophy cascade of two-dimensional soap film flows. Phys Fluids (1994–present) 26(5):055105

  • Rivera M, Wu XL (2000) External dissipation in driven two-dimensional turbulence. Phys Rev Lett 85:976–979

    Article  Google Scholar 

  • Rivera M, Wu XL (2002) Homogeneity and the inertial range in driven two-dimensional turbulence. Phys Fluids 14(9):3098–3108

    Article  MATH  Google Scholar 

  • Roushan P, Wu XL (2005) Structure-based interpretation of the strouhal-reynolds number relationship. Phys Rev Lett 94:054504

    Article  Google Scholar 

  • Ruhnau P, Kohlberger T, Schnörr C, Nobach H (2005) Variational optical flow estimation for particle image velocimetry. Exp Fluids 38(1):21–32

    Article  Google Scholar 

  • Rutgers MA, Wu XL, Bhagavatula R, Petersen AA, Goldburg WI (1996) Two dimensional velocity profiles and laminar boundary layers in flowing soap films. Phys Fluids 8(11):2847–2854

    Article  Google Scholar 

  • Rutgers MA (1998) Forced 2d turbulence: experimental evidence of simultaneous inverse energy and forward enstrophy cascades. Phys Rev Lett 81:2244–2247

    Article  Google Scholar 

  • Samanta D, Ingremeau F, Cerbus R, Tran T, Goldburg WI, Chakraborty P, Kellay H (2014) Scaling of near wall flows in quasi-two-dimensional turbulent channels. Phys Rev Lett 113(2):024504

    Article  Google Scholar 

  • Settles GS (2001) Schlieren and shadowgraph techniques. Experimental fluid mechanics, 1st edn. Springer, Berlin Heidelberg

    Book  MATH  Google Scholar 

  • Sosa R, Arnaud E, Memin E, Artana G (2006) Schlieren image velocimetry applied to ehd flows. In: Proc. of the Int. Symposium on Electrohydrodonamics (ISEHD), pp 331–334

  • Tong P, Goldburg WI, Chan CK, Sirivat A (1988) Turbulent transition by photon-correlation spectroscopy. Phys Rev A 37:2125–2133

    Article  Google Scholar 

  • Tran T, Chakraborty P, Gioia G, Steers S, Goldburg W (2009) Marangoni shocks in unobstructed soap-film flows. Phys Rev Lett 103(10):104501

  • Trapeznikov AA (1957) Application of the method of two-dimensional viscosity and shear strength to the investigation of the structure and composition of two-sided films and surface layers in solutions of soaps and saponins. In: Proceedings of the Second International Congress on Surface Activity, Butterworths, London

  • Vorobieff P, Rivera M, Ecke RE (2001) Imaging 2d turbulence. J Vis 3(4):323–330

    Article  Google Scholar 

  • Wang B, Cai Z, Shen L, Liu T (2015) An analysis of physics-based optical flow. J Comput Appl Math 276:62–80

    Article  MATH  MathSciNet  Google Scholar 

  • Weiss J (1991) The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Phys D Nonlinear Phenom 48(2):273–294

    Article  MATH  MathSciNet  Google Scholar 

  • Wu Y, Fu S, Xing HJ, Kothari R (2000) Flow visualization using the negative-positive grid schlieren system and its image analysis. In: The 9th (Millennium) Symposium on Flow Visualization, Edinburg

  • Yang TS, Wen CY, Lin CY (2001) Interpretation of color fringes in flowing soap films. Exp Therm Fluid Sci 25(34):141–149

    Article  Google Scholar 

  • Zdravkovich MM (1977) Review of flow interference between two circular cylinders in various arrangements. J Fluids Eng 99(4):618–633

    Article  Google Scholar 

  • Zdravkovich MM (1985) Flow induced oscillations of two interfering circular cylinders. J Sound Vib 101(4):511–521

    Article  Google Scholar 

  • Zhong JQ, Jun Z (2005) Thermal convection with a freely moving top boundary. Phys Fluids 17(11):1–12

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Auliel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Auliel, M.I., Hebrero, F.C., Sosa, R. et al. Schlieren technique in soap film flows. Exp Fluids 58, 38 (2017). https://doi.org/10.1007/s00348-017-2311-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-017-2311-4

Keywords

Navigation