Skip to main content
Log in

Characteristics of a wingtip vortex from an oscillating winglet

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Initial perturbations in the wingtip vortices can potentially lead to instabilities that significantly reduce their lifetime in the wake of an aircraft. An active winglet capable of oscillating about its point of attachment to the main wing-section is developed using piezoelectric macro fiber composite, to actively perturb the vortex at its onset. Resonance characteristics of the actuated winglet oscillations are evaluated at different excitation levels and aerodynamic loading. Mean near-field characteristics of the vortex, developing from a stationary and an oscillating winglet, are investigated with the help of stereoscopic particle image velocimetry. Results show that the amplitude of winglet oscillations increases linearly with input excitation, to a highest attainable value of nearly four times the airfoil thickness at the winglet tip. The vortex developing from a winglet is stretched along its axis, having an elliptical core with non-uniform vorticity distribution. Actuation leads to spatial oscillations of the vortex core together with a reduction in the mean peak vorticity levels. The amplitude of the actuated core oscillations remains constant in the investigated region of the wake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

Abbreviations

\(\alpha\) :

Angle of attack

\(\varLambda\) :

Angle of sweep

b :

Span of the experimental wing-section

\(C_{\rm m}\) :

Chord length at the mid-span of the wing-section

\(C_{\rm t}\) :

Chord length at the tip of the winglet

\(C_{\rm b}\) :

Chord length at the base of the winglet

\(C_{\rm p}\) :

Coefficient of pressure

\(\lambda\) :

Taper ratio (=\(C_{\rm t}\)/\(C_{\rm b}\))

\(U_{\infty }\) :

Freestream velocity

\(p_{\rm s}\) :

Static pressure on the airfoil surface

\(p_{\infty }\) :

Static pressure of the freestream

\(q_{\infty }\) :

Dynamic pressure of the freestream

Re :

Reynolds number

\(\omega\) :

Vorticity in the flow direction

\(\varGamma\) :

Circulation in a region

\(\mu\) :

Mean quantity

\(\sigma\) :

Standard deviation of a quantity

References

  • Adrian RJ, Westerweel J (2011) Particle image velocimetry. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Bilanin A, Widnall S (1973) Aircraft wake dissipation by sinusoidal instability and vortex breakdown. In: AIAA 11th aerospace sciences meeting. doi:10.2514/6.1973-107

  • Bilgen O, Junior CDM, Kochersberger KB, Inman DJ (2011) Macro-fiber composite actuators for flow control of a variable camber airfoil. J Intell Mater Syst Struct 22(1):81–91. doi:10.1177/1045389X10392613

    Article  Google Scholar 

  • Crouch J (1997) Instability and transient growth for two trailing-vortex pairs. J Fluid Mech 350:311–330. doi:10.1017/S0022112097007040

    Article  MathSciNet  MATH  Google Scholar 

  • Crouch J, Miller G, Spalart P (2001) Active-control system for breakup of airplane trailing vortices. AIAA J 39(12):2374–2381

    Article  Google Scholar 

  • Crow SC (1970) Stability theory for a pair of trailing vortices. AIAA J 12(8):2172–2179. doi:10.2514/3.6083

    Article  Google Scholar 

  • Devenport WJ, Zsoldos JS, Vogel CM (1997) The structure and development of a counter-rotating wing-tip vortex pair. J Fluid Mech 332:71–104

    Google Scholar 

  • Fabre D, Jacquin L, Loof A (2002) Optimal perturbations in a four-vortex aircraft wake in counter-rotating configuration. J Fluid Mech 451:319–328. doi:10.1017/S0022112001006954

    Article  MathSciNet  MATH  Google Scholar 

  • Flechner SG, Jacobs PF, Whitcomb RT (1976) A high subsonic speed wind tunnel investigation of winglets on a representative second-generation jet transport wing NASA-TN-D-8264, L-10387

  • Guha TK, Oates W, Kumar R (2015) Characterization of piezoelectric macrofiber composite actuated winglets. Smart Mater Struct 24(6):065043. doi:10.1088/0964-1726/24/6/065043

    Article  Google Scholar 

  • Gupta M (2011) Investigation of active control of aircraft wing tip vortices and wake turbulence. Master’s thesis, Auburn University

  • Henderson WP, Holmes BJ (1989) Induced drag-historical perspective. Technical report, SAE technical paper, 89-2341. doi:10.4271/892341

  • Ishimitsu K, Zanton D (1977) Design and analysis of winglets for military aircraft. Phase 2. Technical report, DTIC Document, No. D6-45090

  • Ishimitsu K, VanDevender N, Dodson R, Brault P, Byers B (1976) Design and analysis of winglets for military aircraft. Technical report, DTIC Document, No, pp D6–41799

  • Kauertz S, Neuwerth G (2006) Excitation of instabilities in the wake of an airfoil by means of active winglets. Aerosp Sci Technol 10(7):551–562. doi:10.1016/j.ast.2006.05.003

    Article  Google Scholar 

  • Kelvin L (1880) Vibrations of a columnar vortex. Philos Mag 10(5):155–168. doi:10.1080/14786448008626912

    MATH  Google Scholar 

  • Kerswell RR (2002) Elliptical instability. Annu Rev Fluid Mech 34(1):83–113. doi:10.1146/annurev.fluid.34.081701.171829

    Article  MathSciNet  MATH  Google Scholar 

  • Kumar V, Hays M, Fernandez E, Oates W, Alvi F (2011) Flow sensitive actuators for micro-air vehicles. Smart Mater Struct 20(10):105,033. doi:10.1088/0964-1726/20/10/105033

    Article  Google Scholar 

  • Le Dizes S, Rossi M, Moffatt H (1996) On the three-dimensional instability of elliptical vortex subjected to stretching. Phys Fluids 8(8):2084–2090. doi:10.1063/1.868982

    Article  MathSciNet  MATH  Google Scholar 

  • Leweke T, Williamson C (1998) Cooperative elliptic instability of a vortex pair. J Fluid Mech 360:85–119. doi:10.1017/S0022112097008331

    Article  MathSciNet  MATH  Google Scholar 

  • Matalanis CG, Eaton JK (2007) Wake vortex alleviation using rapidly actuated segmented gurney flaps. AIAA J 45(8):1874–1884

    Article  Google Scholar 

  • Maughmer MD (2003) Design of winglets for high-performance sailplanes. J Aircr 40(6):1099–1106. doi:10.2514/2.7220

    Article  Google Scholar 

  • Meunier P, Leweke T (2001) Three-dimensional instability during vortex merging. Phys Fluids 13(10):2747–2750. doi:10.1063/1.1399033

    Article  MATH  Google Scholar 

  • Panagiotou P, Kaparos P, Yakinthos K (2014) Winglet design and optimization for a MALE UAV using CFD. Aerosp Sci Technol 39:190–205. doi:10.1016/j.ast.2014.09.006

    Article  Google Scholar 

  • Pierrehumbert R (1986) Universal short-wave instability of two-dimensional eddies in an inviscid fluid. Phys Rev Lett 57(17):2157. doi:10.1103/PhysRevLett.57.2157

    Article  Google Scholar 

  • Rennich SC, Lele SK (1999) Method for accelerating the destruction of aircraft wake vortices. J Aircr 36(2):398–404. doi:10.2514/2.2444

    Article  Google Scholar 

  • Robinson A, Saffman P (1984) Three-dimensional stability of an elliptical vortex in a straining field. J Fluid Mech 142:451–466. doi:10.1017/S002211208400118X

    Article  MATH  Google Scholar 

  • Roy C, Leweke T, Thompson MC, Hourigan K (2011) Experiments on the elliptic instability in vortex pairs with axial core flow. J Fluid Mech 677:383–416. doi:10.1017/jfm.2011.91

    Article  MathSciNet  MATH  Google Scholar 

  • Sankrithi MM, Frommer JB (2010) Controllable winglets. US Patent 7,744,038

  • Sciacchitano A, Neal D R, Smith B L, Warner S O, Vlachos P P, Wieneke B, Scarano F (2015) Collaborative framework for piv uncertainty quantification: comparative assessment of methods. Meas Sci Technol 26(7):074,004. doi:10.1088/0957-0233/26/7/074004

    Article  Google Scholar 

  • Spalart P, Wray A (1996) Initiation of the crow instability by atmospheric turbulence. The characterisation and modification of wakes from lifting vehicles in fluids 584:18/1–8, AGARD CP-584

  • Verstraeten JG, Slingerland R (2009) Drag characteristics for optimally span-loaded planar, wingletted, and c wings. J Aircr 46(3):962–971. doi:10.2514/1.39426

    Article  Google Scholar 

  • Whitcomb RT (1976) A design approach and selected wind tunnel results at high subsonic speeds for wing-tip mounted winglets NASA-TN-D-8260, L-10908

  • Wieneke B (2015) Piv uncertainty quantification from correlation statistics. Meas Sci Technol 26(7):074,002. doi:10.1088/0957-0233/26/7/074002

    Article  Google Scholar 

  • Willert C (1996) The fully digital evaluation of photographic piv recordings. Appl Sci Res 56(2–3):79–102. doi:10.1007/BF02249375

    Article  Google Scholar 

  • Wiltse JM, Glezer A (1993) Manipulation of free shear flows using piezoelectric actuators. J Fluid Mech 249:261–285. doi:10.1017/S002211209300117X

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guha, T.K., Kumar, R. Characteristics of a wingtip vortex from an oscillating winglet. Exp Fluids 58, 8 (2017). https://doi.org/10.1007/s00348-016-2289-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-016-2289-3

Keywords

Navigation