Skip to main content
Log in

Ground-to-air flow visualization using Solar Calcium-K line Background-Oriented Schlieren

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The Calcium-K Eclipse Background-Oriented Schlieren experiment was performed as a proof of concept test to evaluate the effectiveness of using the solar disk as a background to perform the Background-Oriented Schlieren (BOS) method of flow visualization. A ground-based imaging system was equipped with a Calcium-K line optical etalon filter to enable the use of the chromosphere of the sun as the irregular background to be used for BOS. A US Air Force T-38 aircraft performed three supersonic runs which eclipsed the sun as viewed from the imaging system. The images were successfully post-processed using optical flow methods to qualitatively reveal the density gradients in the flow around the aircraft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Appleman HS (1957) Derivation of jet-aircraft contrail-formation curves. Air weather service technical report AWS TR-105-145

  • Atcheson B, Heidrich W, Ihrke I (2009) An evaluation of optical flow algorithms for background oriented schlieren imaging. Exp Fluids 46:467. doi:10.1007/s00348-008-0572-7

    Article  Google Scholar 

  • Bauknecht A, Merz CB, Raffel M, Landolt A, Meier AH (2014) Blade-tip vortex detection in maneuvering flight using the background-oriented schlieren technique. J Aircr 51:2005–2014. doi:10.2514/1.C032672

    Article  Google Scholar 

  • Bauknecht A, Ewers B, Wolf C, Leopold F, Yin J, Raffel M (2015) Three-dimensional reconstruction of helicopter blade–tip vortices using a multi-camera BOS system. Exp Fluids 56:1866. doi:10.1007/s00348-014-1866-6

    Article  Google Scholar 

  • Dalziel SB, Hughes GO, Sutherland BR (1998) Synthetic schlieren. In: Proceedings of the 8th international symposium on flow visualization

  • Farnebäck G (2003) Two-frame motion estimation based on polynomial expansion. Image analysis. Springer, Berlin, pp 363–370

    MATH  Google Scholar 

  • Hargather MJ (2013) Background-oriented schlieren diagnostics for large-scale explosive testing. Shock Waves 23:529. doi:10.1007/s00193-013-0446-7

    Article  Google Scholar 

  • Hargather MJ, Settles GS (2010) Natural-background-oriented schlieren imaging. Exp Fluids 48:59. doi:10.1007/s00348-009-0709-3

    Article  Google Scholar 

  • Heineck JT, Banks D, Schairer ET, Haering EA, Bean P (2016) Background oriented schlieren (BOS) of a supersonic aircraft in flight. In: AIAA flight testing conference, AIAA 2016-3356

  • Horn BKP, Schunck BG (1981) Determining optical flow. Artif Intell 17:185. doi:10.1016/0004-3702(81)90024-2

    Article  Google Scholar 

  • Kindler K, Goldhahn E, Leopold F, Raffel M (2007) Recent developments in background oriented schlieren methods for rotor blade tip vortex measurements. Exp Fluids 43:233. doi:10.1007/s00348-007-0328-9

    Article  Google Scholar 

  • Lucas BD, Kanade T (1981) An iterative image registration technique with an application to stereo vision. IJCAI 81:674

    Google Scholar 

  • Raffel M (2015) Background-oriented schlieren (BOS) techniques. Exp Fluids 56:60. doi:10.1007/s00348-015-1927-5

    Article  Google Scholar 

  • Raffel M, Richard H, Meier GEA (2000) On the applicability of background oriented optical tomography for large scale aerodynamic investigations. Exp Fluids 28:477. doi:10.1007/s003480050408

    Article  Google Scholar 

  • Raffel M, Willert CE, Wereley S, Kompenhans J (2007) Particle image velocimetry, a practical guide. Springer, Berlin

    Google Scholar 

  • Reda I (2010) Solar eclipse monitoring for solar energy applications. Sol Energy 112:339

    Article  Google Scholar 

  • Richard H, Raffel M (2001) Principle and applications of the background oriented schlieren (BOS) method. Meas Sci Technol 12:1576

    Article  Google Scholar 

  • Sommersel OK, Bjerketvedt D, Christensen SO, Krest O, Vaagsaether K (2008) Application of background oriented schlieren for quantitative measurements of shock waves from explosions. Shock Waves 18:291. doi:10.1007/s00193-008-0142-1

    Article  MATH  Google Scholar 

  • Vincenty T (1975) Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations. Surv Rev 23:88

    Article  Google Scholar 

  • Weinstein LM (1994) An optical technique for examining aircraft shock wave structures in flight. In: 1994 sonic boom workshop: atmospheric propagation and acceptability studies, NASA CP-3279

Download references

Acknowledgements

The authors thank the National Aeronautics and Space Administration Commercial Supersonics Technology Project for funding and support, National Aeronautics and Space Administration Armstrong Flight Research Center support personnel for enabling these flights, and Major Jonathan Orso and Colonel Glenn Graham of the US Air Force Test Pilot School for their skillful flying.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Hill.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hill, M.A., Haering, E.A. Ground-to-air flow visualization using Solar Calcium-K line Background-Oriented Schlieren. Exp Fluids 58, 4 (2017). https://doi.org/10.1007/s00348-016-2285-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-016-2285-7

Keywords

Navigation