Skip to main content
Log in

Direct measurement of wall slip and slip layer thickness of non-Brownian hard-sphere suspensions in rectangular channel flows

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Wall slip is a long-known phenomenon in the field of rheology. Nevertheless, the origin and the evolution are not completely clear yet. Regarding suspensions, the effect becomes even more complicated, because different mechanisms like pure slip or slip due to particle migration have to be taken into account. Furthermore, suspensions themselves show many flow anomalies and the isolation of slip is complicated. In order to develop working physical models, further insight is necessary. In this work, we measured experimentally the wall slip velocities of different highly filled suspensions in a rectangular slit die directly with respect to the particle concentration and the particle size. The slip velocities were obtained using a particle image velocimetry (PIV) system. The suspensions consisting of a castor oil–cinnamon oil blend and PMMA particles were matched in terms of refractive indexes to appear transparent. Hereby, possible optical path lengths larger than 15 mm were achieved. The slip velocities were found to be in a quadratic relation to the wall shear stress. Furthermore, the overall flow rate as well as the particle concentration has a direct influence on the slip. Concerning the shear stress, there seem to be two regions of slip with different physical characteristics. Furthermore, we estimated the slip layer thickness directly from the velocity profiles and propose a new interpretation. The PIV technique is used to investigate the viscosity and implicit the concentration profile in the slit die. It is shown that the particle migration process is quite fast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Adrian RJ (2005) Twenty years of particle image velocimetry. Exp Fluids 39:159–169

    Article  Google Scholar 

  • Ballesta P, Besseling R, Isa L, Petekidis G, Poon WCK (2008) Slip and flow of hard-sphere colloidal glasses. Phys Rev Lett 101:258301

    Article  Google Scholar 

  • Barnes HA (1995) A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscometers: its cause, character, and cure. J Non-Newtonian Fluid Mech 56:221–251

    Article  Google Scholar 

  • Blanc F, Peters F, Lemaire E (2011) Local transient rheological behavior of concentrated suspensions. J Rheol 55:835–854

    Article  Google Scholar 

  • Blanc F, Lemaire E, Meunier A, Peters F (2013) Microstructure in sheared non-Brownian concentrated suspensions. J Rheol 57:273–292

    Article  Google Scholar 

  • Cohen Y, Metzner AB (1985) Apparent slip flow of polymer solutions. J Rheol 29:67–102

    Article  Google Scholar 

  • Degré G, Joseph P, Tabeling P, Lerouge S, Cloitre M, Ajdari A (2006) Rheology of complex fluids by particle image velocimetry in microchannels. Appl Phys Lett 89:24104

    Article  Google Scholar 

  • Denn MM, Morris JF (2014) Rheology of non-Brownian suspensions. Annu Rev Chem Biomol Eng 5:203–228

    Article  Google Scholar 

  • Fall A, Bertrand F, Ovarlez G, Bonn D (2009) Yield stress and shear banding in granular suspensions. Phys Rev Lett 103:178301

    Article  Google Scholar 

  • Fattmann G (2007) Praktische Rheometrie wandgleitender Polymere. Shaker, Aachen

    Google Scholar 

  • Gallier S, Lemaire E, Peters F, Lobry L (2014) Rheology of sheared suspensions of rough frictional particles. J Fluid Mech 757:514–549

    Article  MathSciNet  Google Scholar 

  • Guy BM, Hermes M, Poon WCK (2015) Towards a unified description of the rheology of hard-particle suspensions. Phys Rev Lett. doi:10.1103/PhysRevLett.115.088304

    Google Scholar 

  • Hatzikiriakos SG, Dealy JM (1991) Wall slip of molten high density polyethylene. I. Sliding plate rheometer studies. J Rheol 35:497–523

    Article  Google Scholar 

  • Heller W (1965) Remarks on refractive index mixture rules. J Phys Chem 69:1123–1129

    Article  Google Scholar 

  • Hogg AJ (1994) The inertial migration of non-neutrally buoyant spherical particles in two-dimensional shear flows. J Fluid Mech 272:285–318

    Article  MathSciNet  MATH  Google Scholar 

  • Jana SC, Kapoor B, Acrivos A (1995) Apparent wall slip velocity coefficients in concentrated suspensions of noncolloidal particles. J Rheol 39:1123–1132

    Article  Google Scholar 

  • Jiang TQ, Young AC, Metzner AB (1986) The rheological characterization of HPG gels: measurement of slip velocities in capillary tubes. Rheol Acta 25:397–404

    Article  Google Scholar 

  • Joseph P, Tabeling P (2005) Direct measurement of the apparent slip length. Phys Rev E 71:35303

    Article  Google Scholar 

  • Kalyon DM (2005) Apparent slip and viscoplasticity of concentrated suspensions. J Rheol 49:621–640

    Article  Google Scholar 

  • Koh CJ, Hookham P, Leal LG (1994) An experimental investigation of concentrated suspension flows in a rectangular channel. J Fluid Mech 266:1–32

    Article  Google Scholar 

  • Korhonen M, Mohtaschemi M, Puisto A, Illa X, Alava MJ (2015) Apparent wall slip in non-Brownian hard-sphere suspensions. Eur Phys J E 38(5):129. doi:10.1140/epje/i2015-15046-y

    Article  Google Scholar 

  • Krieger IM, Dougherty TJ (1959) A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans Soc Rheol 3:137–152

    Article  MATH  Google Scholar 

  • Leal LG (2007) Advanced transport phenomena: fluid mechanics and convective transport processes. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Lecampion B, Garagash DI (2014) Confined flow of suspensions modelled by a frictional rheology. J Fluid Mech 759:197–235

    Article  Google Scholar 

  • Leighton D, Acrivos A (1987) The shear-induced migration of particles in concentrated suspensions. J Fluid Mech 181:415–439

    Article  Google Scholar 

  • Lyon MK, Leal LG (1998) An experimental study of the motion of concentrated suspensions in two-dimensional channel flow. Part 1. Monodisperse systems. J Fluid Mech 363:25–56

    Article  MATH  Google Scholar 

  • Macosko CW, Larson RG (1994) Rheology: principles, measurements, and applications. VCH, New York

    Google Scholar 

  • Magnin A, Piau JM (1990) Cone-and-plate rheometry of yield stress fluids. Study of an aqueous gel. J Non-Newtonian Fluid Mech 36:85–108

    Article  Google Scholar 

  • Medhi BJ, Kumar AA, Singh A (2011) Apparent wall slip velocity measurements in free surface flow of concentrated suspensions. Int J Multiph Flow 37:609–619

    Article  Google Scholar 

  • Meeker SP, Bonnecaze RT, Cloitre M (2004) Slip and flow in pastes of soft particles: direct observation and rheology. J Rheol 48:1295–1320

    Article  Google Scholar 

  • Miller RM, Morris JF (2006) Normal stress-driven migration and axial development in pressure-driven flow of concentrated suspensions. J Non Newtonian Fluid Mech 135:149–165

    Article  MATH  Google Scholar 

  • Mooney M (1931) Explicit formulas for slip and fluidity. J Rheol 2:210–222

    Article  Google Scholar 

  • Morris JF, Boulay F (1999) Curvilinear flows of noncolloidal suspensions: the role of normal stresses. J Rheol 43:1213–1237

    Article  Google Scholar 

  • Morris JF, Brady JF (1998) Pressure-driven flow of a suspension. Int J Multiph Flow 24:105–130

    Article  MATH  Google Scholar 

  • Nott PR, Brady JF (1994) Pressure-driven flow of suspensions: simulation and theory. J Fluid Mech 275:157–199

    Article  MATH  Google Scholar 

  • Nott PR, Guazzelli E, Pouliquen O (2011) The suspension balance model revisited. Phys Fluids. doi:10.1063/1.3570921

    Google Scholar 

  • Ovarlez G, Bertrand F, Rodts S (2006) Local determination of the constitutive law of a dense suspension of noncolloidal particles through magnetic resonance imaging. J Rheol 50:259–292

    Article  Google Scholar 

  • Ovarlez G, Rodts S, Ragouilliaux A, Coussot P, Goyon J, Colin A (2008) Wide-gap Couette flows of dense emulsions: local concentration measurements, and comparison between macroscopic and local constitutive law measurements through magnetic resonance imaging. Phys Rev E 78:36307

    Article  Google Scholar 

  • Pérez-González J, López-Durán JJ, Marín-Santibáñez BM, Rodríguez-González F (2012) Rheo-PIV of a yield-stress fluid in a capillary with slip at the wall. Rheol Acta 51:937–946

    Article  Google Scholar 

  • Phillips RJ, Armstrong RC, Brown RA, Graham AL, Abbott JR (1992) A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration. Phys Fluids A 4:30–40

    Article  MATH  Google Scholar 

  • Pieper S, Kirchhoff N, Schmid HJ (2015) Absence of pressure sensitivity of apparent wall slip in pressure-driven flow of non-colloidal suspensions. Rheol Acta 54:69–75

    Article  Google Scholar 

  • Raffel M, Willert CE, Wereley ST, Kompenhans J (2013) Particle Image Velocimetry: A Practical Guide. Springer, Berlin Heidelberg

    Google Scholar 

  • Raith MM, Raase P, Reinhardt P (2012) Guide to thin section microscopy. E-Book, Mineralogical Society of America

  • Reiner M (1931) Slippage in a non-Newtonian liquid. J Rheol 2:337

    Article  Google Scholar 

  • Robinson JV (1957) The viscosity of suspensions of spheres. III. Sediment volume as a determining parameter. Trans Soc Rheol 1:15

    Article  Google Scholar 

  • Rodríguez-González F, Pérez-González J, De Vargas L, Marín-Santibáñez BM (2010) Rheo-PIV analysis of the slip flow of a metallocene linear low-density polyethylene melt. Rheol Acta 49:145–154

    Article  Google Scholar 

  • Saffman PG (1965) The lift on a small sphere in a slow shear flow. J Fluid Mech 22:385–400

    Article  MATH  Google Scholar 

  • Segre G, Silberberg A (1961) Radial particle displacements in poiseuille flow of suspensions. Nature 189:209–210

    Article  Google Scholar 

  • Semwogerere D, Morris JF, Weeks ER (2007) Development of particle migration in pressure-driven flow of a Brownian suspension. J Fluid Mech 581:437–451

    Article  MATH  Google Scholar 

  • Seto R, Mari R, Morris JF, Denn MM (2013) Discontinuous shear thickening of frictional hard-sphere suspensions. Phys Rev Lett 111:218301

    Article  Google Scholar 

  • Sochi T (2011) Slip at fluid-solid interface. Polym Rev 51:309–340

    Article  Google Scholar 

  • Soltani F, Yilmazer U (1998) Slip velocity and slip layer thickness in flow of concentrated suspensions. J Appl Polym Sci 70:515–522

    Article  Google Scholar 

  • Uhland E (1976) Modell zur Beschreibung des Fließens wandgleitender Substanzen durch Düsen. Rheol Acta 15:30–39

    Article  Google Scholar 

  • Westerweel J (1997) Fundamentals of digital particle image velocimetry. Meas Sci Technol 8:1379–1392

    Article  Google Scholar 

  • Wiederseiner S, Andreini N, Epely-Chauvin G, Ancey C (2011) Refractive-index and density matching in concentrated particle suspensions: a review. Exp Fluids 50:1183–1206

    Article  Google Scholar 

  • Yaras P, Kalyon DM, Aral BK, Yilmazer U (1993) Rheological behavior of a concentrated suspension: a solid rocket fuel simulant. J Rheol 37:35–53

    Article  Google Scholar 

  • Yaras P, Kalyon DM, Yilmazer U (1994) Flow instabilities in capillary flow of concentrated suspensions. Rheol Acta 33:48–59

    Article  Google Scholar 

  • Yeo K, Maxey MR (2010) Dynamics of concentrated suspensions of non-colloidal particles in Couette flow. J Fluid Mech 649:205–231

    Article  MathSciNet  MATH  Google Scholar 

  • Yilmazer U, Kalyon DM (1989) Slip effects in capillary and parallel disk torsional flows of highly filled suspensions. J Rheol 33:1197–1212

    Article  Google Scholar 

  • Yoshimura A, Prud’homme RK (1988) Wall slip corrections for Couette and parallel disk viscometers. J Rheol 32:53–67

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Jesinghausen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jesinghausen, S., Weiffen, R. & Schmid, HJ. Direct measurement of wall slip and slip layer thickness of non-Brownian hard-sphere suspensions in rectangular channel flows. Exp Fluids 57, 153 (2016). https://doi.org/10.1007/s00348-016-2241-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-016-2241-6

Keywords

Navigation