Skip to main content
Log in

POD-Galerkin advection model for convective flow: application to a flapping rectangular supersonic jet

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

This article describes a model obtained by applying proper orthogonal decomposition to the advection equation. The resulting set of equations links the POD modes, their temporal and spatial derivatives and the flow convection velocity. It provides a technique to calculate the convection velocity of coherent structures. It follows, from the model, that a priori knowledge of the convection velocity suffices to construct a dynamical model of the flow. This is demonstrated using experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

x :

Space derivative

t :

Time derivative

e :

External flow

j :

Jet flow

\(\varPhi ^{(n)}(\mathbf x )\) :

Spatial POD mode of order n

\(a^{(n)}(t)\) :

Temporal POD coefficient of order n

\(f_\mathrm{s}\) :

Screech frequency

\(g(\mathbf x ,t)\) :

Spatiotemporal field

\(h_j\) :

Size of the nozzle

\(L_j\) :

Height of the nozzle

M :

Mach number

\(M_e\) :

External flow Mach number

\(U_\mathrm{c}\) :

Convection velocity

References

  • Adrian RJ (1991) Particle imaging techniques for experimental fluid mechanics. Annu Rev Fluid Mech 23:261–304

    Article  Google Scholar 

  • Alkislar MB, Krothapalli A, Lourenco LM (2003) Structure of a screeching rectangular jet: a stereoscopic particle image velocimetry study. J Fluid Mech 489:121–154

    Article  MATH  Google Scholar 

  • Berland J, Bogey C, Baily C (2007) Numerica l study of screech generation in a planar supersonic jet. Phys Fluids 19:075105-1–075105-14

    Article  MATH  Google Scholar 

  • Delville J (1995) La dcomposition orthogonale aux valeurs propres et l’analyse de l’organisation tridimensionnelle des coulement turbulents cisaillés libres. PhD thesis, Université de Poitiers, France

  • Edgington-Mitchell D, Oberleithner K, Honnery DR, Soria J (2014) Coherent structure and sound production in the helical mode of a screeching axisymmetric jet. J Fluid Mech 748:822–847

    Article  Google Scholar 

  • Jaunet V (2010) Etude d’un jet rectangulaire supersonique nombre de mach 1.45 vectorise par actionneur fluidique. PhD thesis, Université de Poitiers, France

  • Jaunet V, Aymer D, Collin E, Bonnet JP, Lebedv A, Fourment C (2010) 3d effects in a supersonic rectangular jet vectored by flow separation control, a numerical and experimental study. AIAA paper 2010-4976

  • Kerherve F, Jordan P, Gervais Y, Valière JC, Braud P (2004) Two-point laser doppler velocimetry measurements in a mach 1.2 cold supersonic jet for statistical aeroacoustic source model. Exp Fluids 37(3):419–437. doi:10.1007/s00348-004-0815-1

    Article  Google Scholar 

  • Lammari MR (1996) Mesures par vlocimtrie laser doppler dans une couche de mlange turbulente supersonique: quelques aspects du processus de mesure. PhD thesis

  • Lumley JL (1967) The structure of inhomogeneous turbulent flows. Atmospheric turbulence and radio wave propagation, pp 166–178

  • Morris PJ, Zaman K (2010) Velocity measurements in jets with application to noise source modeling. J Sound Vib 329(4):394–414

    Article  Google Scholar 

  • Murray N, Ukeiley L (2007) An application of gappy pod. Exp Fluids 42(1):79–91. doi:10.1007/s00348-006-0221-y

    Article  Google Scholar 

  • Papamoschou D (1989) A two-spark schlieren system for very-high velocity measurement. Exp In Fluids 7:354–356

    Article  Google Scholar 

  • Perret L, Collin E, Delville J (2006) Polynomial identification of POD based low-order dynamical system. J Turbul 79(17):17

    Article  MathSciNet  MATH  Google Scholar 

  • Powell A (1953a) On the mechanism of choked jet noise. Proc Phys Soc Lond B66:1039–1056

    Article  Google Scholar 

  • Powell A (1953b) On the noise emanating from a two dimensional jet above the critical pressure. Aeronaut Q 4:103–122

    Google Scholar 

  • Raman G (1999) Supersonic jet screech: half-century from powell to the present. J Sound Vib 225:543–571

    Article  Google Scholar 

  • Scarano F (2002) Iterative image deformation methods in PIV. Meas Sci Tech 13:R1–R19

    Article  Google Scholar 

  • Shih C, Lourenco L, Krothapalli A (1995) Investigation of flow at leading and trailing edges of pitching-up airfoil. AIAA J 33(8):1369–1376

    Article  Google Scholar 

  • Sirovich L (1987) Turbulence and the dynamics of coherent structures. part 1: coherent strucutres. Q Appl Math 45:561–571

    MathSciNet  MATH  Google Scholar 

  • Soria J (1996) An investigation of the near wake of a circular cylinder using a video-based digital cross-correlation particle image velocimetry technique. Exp Thermal Fluid Sci 12:221–233

    Article  Google Scholar 

  • Westerweel J, Scarano F (2005) Universal outlier detection for PIV data. Exp Fluids 39(6):1096–1100. doi:10.1007/s00348-005-0016-6

    Article  Google Scholar 

  • Willert CE, Gharib M (1991) Digital particle image velocimetry. Exp FLuids 10:181–193

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Region Poitou-Charentes and DGA-Spae for supporting part of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Jaunet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaunet, V., Collin, E. & Delville, J. POD-Galerkin advection model for convective flow: application to a flapping rectangular supersonic jet. Exp Fluids 57, 84 (2016). https://doi.org/10.1007/s00348-016-2156-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-016-2156-2

Keywords

Navigation