Skip to main content
Log in

Simultaneous 10 kHz TPIV, OH PLIF, and CH2O PLIF measurements of turbulent flame structure and dynamics

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Simultaneous 10 kHz repetition-rate tomographic particle image velocimetry, hydroxyl planar laser-induced fluorescence (OH PLIF), and formaldehyde (CH\(_2\)O) PLIF were used to study the structure and dynamics of turbulent premixed flames. The flames investigated span from the classically defined corrugated flamelet regime to conditions at which broadened and/or broken flamelets are expected. Methods are presented for determining 3D flame topologies from the Mie scattering tomography and for tracking features through space and time using theoretical Lagrangian particles. Substantial broadening of the CH\(_2\)O region is observed with increasing turbulence intensity. However, OH production remains rapid, and the region of OH and CH\(_2\)O overlap remains thin. Local flame speeds exceeding three times the laminar flame speed are observed in regions of flame–flame interaction. Furthermore, a method of tracking fluid residence time within the CH\(_2\)O layer is presented and shows that residence time decreases at higher turbulence intensity despite the broader distribution of the CH\(_2\)O, indicating an increase in local reaction rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Ayoola B, Balachandran R, Frank J, Mastorakos E, Kaminski C (2006) Spatially resolved heat release rate measurements in turbulent premixed flames. Combust Flame 144:1–16

    Article  Google Scholar 

  • Baum E, Peterson B, Surmann C, Michaelis D, Böhm B, Dreizler A (2013) Investigation of the 3D flow field in an IC engine using tomographic PIV. Proc Combust Inst 34:2903–2910

    Article  Google Scholar 

  • Böckle S, Kazenwadel J, Kinzelmann T, Shin D, Schulz C, Wolfrum J (2000) Simultaneous single-shot laser-based imaging of formaldehyde, OH, and temperature in turbulent flames. Proc Combust Inst 28(1):279–286

    Article  Google Scholar 

  • Boxx I, Carter C, Meier W (2014) On the feasibility of Tomographic-PIV with low pulse-energy illumination in a lifted turbulent jet flame. Exp Fluids 55(8):1771–1788

    Article  Google Scholar 

  • Brand J (1956) The electronic spectrum of formaldehyde. J Chem Soc 858–872

  • Buchner A, Buchmann N, Kilany K, Atkinson C, Soria J (2012) Stereoscopic and tomographic PIV of a pitching plate. Exp Fluids 52(2):299–314

    Article  Google Scholar 

  • Buschmann A, Dinkelacker F, Schafer T, Schafer M, Wolfrum J (1996) Measurement of the instantaneous detailed flame structure in turbulent premixed combustion. Proc Combust Inst 26:437–445

    Article  Google Scholar 

  • Chen Y, Bilger R (2002) Experimental investigation of three-dimensional flame-front structure in premixed turbulent combustion -I: Hydrocarbon/air bunsen flames. Combust Flame 131:400–435

    Article  Google Scholar 

  • Chen Y, Bilger R (2004) Experimental investigation of three-dimensional flame-front structure in premixed turbulent combustion -II: Lead hydrogen/air bunsen flames. Combust Flame 138:155–174

    Article  Google Scholar 

  • Clouthier D, Ramsay D (1983) The spectroscopy of formaldehyde and thioformaldehyde. Annu Rev Phys Chem 34:31–58

    Article  Google Scholar 

  • Coriton B, Steinberg A, Frank J (2014) High-speed tomographic PIV and OH PLIF measurements in turbulent reactive flows. Exp Fluids 55(6):1743–1763

    Article  Google Scholar 

  • Dieke G, Kistiakowsky G (1934) The structure of the ultraviolet absorption spectrum of formaldehyde. Phys Rev Lett 45(1):4–28

    Google Scholar 

  • Donbar J, Driscoll J, Carter C (1997) Simultaneous CH planar laser-induced fluorescence and particle imaging velocimetry in turbulent flames. Am Inst Aeronaut Astronaut 66(1):1–19

    Google Scholar 

  • Echekki T, Mastorakos E (2010) Turbulent combustion modeling. Springer, Berlin

    MATH  Google Scholar 

  • Elsinga G, Ganapathisubramani B (2012) Forward: advances in 3D velocimetry. Measurement Sci Technol 24:1–3

    Google Scholar 

  • Elsinga G, Scarano F, Wieneke B (2006) Tomographic particle image velocimetry. Exp Fluids 41:933–947

    Article  Google Scholar 

  • Filatyev S, Driscoll J, Carter C, Donbar J (1998) Measured properties of turbulent premixed turbulent flames. Combust Flame 141:1–21

    Article  Google Scholar 

  • Floyd J, Geipel P, Kempf A (2010) Computed tomography of chemiluminescence (CTC): instantaneous 3D measurements and phantom studies of a turbulent opposed jet flame. Combust Flame 33(1):751–758

    Google Scholar 

  • Frank J, Kalt P, Bilger R (1999) Measurements of conditional velocities in turbulent premixed flames by simultaneous OH PLIF and PIV. Combust Flame 116:220–232

    Article  Google Scholar 

  • Fukushima N, Katayama M, Naka Y, Oobayashi T, Shimura M, Nada Y (2015) Combustion regime classification of HCCI/PCCI combustion using Lagrangian fluid particle tracking. Proc Combust Inst 35(3):3009–3017

    Article  Google Scholar 

  • Gabet K, Patton R, Jiang N, Lempert W, Sutton J (2012) High-speed CH\(_2\)O plif imaging in turbulent flames using a pulse-burst laser system. Appl Phys B 106(3):569–575

    Article  Google Scholar 

  • Ganapathisubramani B, Lakshimnarasimhan K, Clemens N (2008) Investigation of three-dimensional structure of fine scales in a turbulent jet by using cinematographic stereoscopic particle image velocimetry. J Fluid Mech 598:141–175

    Article  MATH  Google Scholar 

  • Garcia D (2010) Robust smoothing of gridded data in one and higher dimensions with missing values. Comput Stat Data Anal 54:1167–1178

    Article  MathSciNet  MATH  Google Scholar 

  • Goodwin D (2003) An open-source, extensible software suite for CVD process simulation. In: Proceedings of CVD XVI and EuroCVD fourteen, pp 155–162

  • Humble R, Elsinga G, Scarano F, Oudheusden BV (2009) Three-dimensional instantaneous structure of a shock wave/turbulence boundary layer interaction. J Fluid Mech 622:33–62

    Article  MATH  Google Scholar 

  • Kuhl J, Jovicic G, Zigan L, Leipertz A (2013) Transient electric field response of laminar premixed flames. Proc Combust Inst 34:3003–3010

    Article  Google Scholar 

  • Leipertz A, Braeuer A, Kiefer J, Dreizler A, Heeger C (2010) Handbook of combustion. Wiley, Hoboken

    Google Scholar 

  • Li Z, Li B, Sun Z, Bai X, Aldén M (2010) Turbulence and combustion interaction: high resolution local flame front structure visualization using simultaneous single-shot PLIF imaging of CH, OH, and CH\(_2\)O in a piloted premixed jet flame. Combust Flame 157(6):1087–1096

    Article  Google Scholar 

  • Lipatnikov A, Chomiak J, Sabelnikov V, Nishiki S, Hasegawa T (2015) Unburned mixture fingers in premixed turbulent flames. Proc Combust Inst 35:1401–1408

    Article  Google Scholar 

  • Moeck J, Bourgouin J, Durox D, Schuller T, Candel S (2013) Tomographic reconstruction of heat release rate perturbation induced by helical modes in turbulent swirl flames. Exp Fluids 54(4):1498–1515

    Article  Google Scholar 

  • Olofsson J, Richter M, Auge M, Aldén M (2006) Development of high temporally (MHz) and spatially (3D) resolved formaldehyde measurements in combustion environments. Rev Sci Instrum 77(1):1–6

    Article  Google Scholar 

  • Paul P, Najm H (1998) Planar laser-induced fluorescence imaging of flame heat release rate. Proc Combust Inst 27(1):43–50

    Article  Google Scholar 

  • Peterson B, Baum E, Böhm B, Sick V, Dreizler A (2013) High-speed PIV and LIF imaging of temperature stratification in an internal combustion engine. Proc Combust Inst 34(2):3653–3660

    Article  Google Scholar 

  • Petersson P, Olofsson J, Brackman C, Seyfried H, Zetterberg J, Richter M, Aldén M, Linne M, Cheng R, Nauert A, Geyer D, Dreizler A (2007) Simultaneous PIV/OH-PLIF, Rayleigh thermometry/OH-PLIF and stereo PIV measurements in a low-swirl flame. Appl Opt 46(19):3928–3936

    Article  Google Scholar 

  • Poludnenko A (2014) Pulsating instability and self-acceleration of fast turbulent flames. Phys Fluids 27:014106

    Article  Google Scholar 

  • Poludnenko A, Oran E (2010) The interaction of high-speed turbulence with flames: global properties and internal flame structure. Combust Flame 157(2):301–326

    Google Scholar 

  • Poludnenko A, Oran E (2011) The interaction of high-speed turbulence with flames: turbulent flame speed. Combust Flame 158:301–326

    Article  Google Scholar 

  • Richter M, Collin R, Nygren J, Aldén M, Hildingsson L, Johansson B (2005) Studies of the combustion process with simultaneous formaldehyde and OH PLIF in a direct-injected HCCI engine. JSME Int J 48(4):701–707

    Article  Google Scholar 

  • Roy S, Miller J, Slipchenko M, Hsu P, Mance J, Meyer T, Gord J (2014) 100-ps-pulse-duration, 100-J burst-mode laser for kHz-MHz flow diagnostics. Opt Lett 39(22):6462–6465

    Article  Google Scholar 

  • Scarano F, Poelma C (2009) Three-dimensional vorticity patterns of cylinder wakes. Exp Fluids 47:69–83

    Article  Google Scholar 

  • Schroeder A, Willert C (2008) Particle image velocimetry: new developments and recent applications. Springer, Berlin

    Google Scholar 

  • Shepherd I, Cheng R (2001) The burning rate of premixed flames in moderate and intense turbulence. Combust Flame 127:2066–2075

    Article  Google Scholar 

  • Shimura M, Ueda T, Tanahashi M, Choi G, Miyauchi T (2010) Simultaneous dual-plane ch plif/single-plane oh plif and dual-plane stereoscopic piv in turbulent premixed flames. In: 15th International symposium on laser techniques to fluid mechanics

  • Skiba A, Wabel T, Temme J, Driscoll J (July 2015) Measurements to determine the regimes of turbulent premixed flames. In: 51st AIAA/SAE/ASEE joint propulsion conference, Orlando, FL

  • Steinberg A, Driscoll J (2009) Straining and wrinkling processes during turbulence-premixed flame interaction measured using temporally-resolved diagnostics. Combust Flame 156:2285–2306

    Article  Google Scholar 

  • Steinberg A, Driscoll J, Ceccio S (2008) Measurements of turbulent premixed flame dynamics using cinema-stereoscopic PIV. Exp Fluids 44:985–999

    Article  Google Scholar 

  • Steinberg A, Boxx I, Stöhr M, Arndt C, Meier W, Carter C (July 2011) Influence of flow-structure dynamics on thermo-acoustic instabilities in oscillating swirl flames. In: Joint propulsion conference, San Diego CA

  • Steinberg A, Coriton B, Frank J (2015) Influence of combustion on principal strain-rate transport in turbulent premixed flames. Proc Combust Inst 35:1287–1294

    Article  Google Scholar 

  • Stella A, Guj G, Kompenhans J, Richard H, Raffel M (2001) Three-components particle image velocimetry measurements in premixed flames. Aerosp Sci Technol 5:357–364

    Article  Google Scholar 

  • Temme JE, Wabel TM, kiba AW, Driscoll JF (2015) Measurements of premixed turbulent combustion regimes of high reynolds number flows. In: AIAA SciTech. Kissimmee, Florida

  • Tokare M, Sharaborin D, Lobasov A, Chikishev L, Dulin V, Markovich D (2015) 3D velocity measurements in a premixed flame by tomographic PIV. Measurement Sci Technol 26(6):1–13

    Google Scholar 

  • Trunk P, Boxx I, Heeger C, Meier W, Böhm B, Dreizler A (2013) Premixed flame propagation in turbulent flow by means of stereoscopic PIV and dual-plane OH-PLIF at sustained kHz repetition rates. Proc Combust Inst 34:3565–3572

    Article  Google Scholar 

  • Wang J, Zhang M, Huang Z, Kudo T, Kobayashi H (2013) Measurement of the instantaneous flame front structure of syngas turbulent premixed flames at high pressure. Combust Flame 160:2434–2441

    Article  Google Scholar 

  • Weinkauff J, Michaelis D, Dreizler A, Böhm B (2013) Tomographic PIV measurements in a turbulent lifted jet flame. Exp Fluids 54(12):1624–1629

    Article  Google Scholar 

  • Wellander R, Richter M, Aldén M (2014) Time-resolved (kHz) 3D imagine of OH PLIF in a flame. Exp Fluids 55(6):1764–1776

    Article  Google Scholar 

  • Westerweel J, Elsinga G, Adrian R (2013) Particle image velocimetry for complex and turbulent flows. Annu Rev Fluid Mech 45:409–436

    Article  MathSciNet  MATH  Google Scholar 

  • Williams F (1976) Criteria for existence of wrinkled laminar flame structure of premixed turbulent flames. Combust Flame 26:269–270

    Article  Google Scholar 

  • Worth N, Nickels T, Swaminathan N (2010) A tomographic PIV resolution study based on homogeneous isotropic turbulence DNS data. Exp Fluids 49:637–656

    Article  Google Scholar 

  • Xu W, Wickersham A, Ma L (2015) 3D flame topography obtained by tomographic chemiluminescence with direct comparison to planar scattering measurements. Appl Opt 54(9):2174–2182

    Article  Google Scholar 

  • Yeung P, Pope S (1988) An algorithm for tracking fluid particles in numerical simulations of homogeneous turbulence. J Comput Phys 79:373–416

    Article  MATH  Google Scholar 

  • Zhou B, Kiefer J, Zetterberg J, Li Z, Aldén M (2014) Strategy for PLIF single-shot HCO imaging in turbulent methane/air flames. Combust Flame 161:1566–1574

    Article  Google Scholar 

Download references

Acknowledgments

This work was sponsored by the US Air Force Office of Scientific Research under Grant No. FA9550-13-1-0070, Project Monitor Dr. Chiping Li, and NSERC under Grant No. RGPIN 413232. Travel for Stephen Hammack was supported using AFOSR Grant FA9550-14-1-0343.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey R. Osborne.

Appendices

Appendix: Burner geometry

Two perforated plates were used to generate isotropic turbulence in the Hi-Pilot burner, as was shown in Fig. 1b. The geometry of the turbulence generating plates are shown in Fig. 21, and the pilot exit plate in Fig. 22.

Fig. 21
figure 21

Geometry of a turbulence plate A and b B. Dimensions in mm and percent open area is, respectively, 51 and 15 %

Fig. 22
figure 22

Plane view of the pilot exit plate, dimensions in mm

Hi-Pilot jet boundary conditions

Hot wire measurements were taken at the jet exit plane in order to characterize the boundary conditions. Contours of exit plane velocity and mean velocity fluctuations \(u'_t = \overline{| u - \bar{u} |}\) are shown in Fig. 23. As can be seen, there was a slight asymmetry in the velocity fluctuations profile, which was believed to be caused by manufacturing imperfections. Raw exit plane velocity data can be made available upon request.

Fig. 23
figure 23

Velocity statistics at jet exit plane for Cases 1–3 (left to right) from CTA. a Mean velocity (m/s). b Velocity fluctuations (m/s)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osborne, J.R., Ramji, S.A., Carter, C.D. et al. Simultaneous 10 kHz TPIV, OH PLIF, and CH2O PLIF measurements of turbulent flame structure and dynamics. Exp Fluids 57, 65 (2016). https://doi.org/10.1007/s00348-016-2151-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-016-2151-7

Keywords

Navigation