Skip to main content

Advertisement

Log in

Long-term angiogenic activity of free grafts and pedicle flap in a rabbit urethroplasty model

  • Original Article
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Purpose

We studied the late angiogenic activity of free grafts and a pedicle flap in a rabbit urethroplasty model to determine whether angiogenic activity plays a role in late outcomes of urethral reconstruction in rabbits.

Methods

Twenty-eight rabbits were randomly divided into five groups according to the method used to bridge a urethral defect as an onlay patch: Control, simple closure of urethral defect (Group O1); free penile skin graft (FPSG, Group A1); buccal mucosal graft (BuMG, Group B1); bladder mucosal graft (BlMG, Group C1); and pedicle penile skin flap (PPSF, Group D1). Angiogenic activity of the patch on postoperative day 84 was assessed by immunohistochemistry.

Results

The angiogenic activity in Groups O1, A1, B1, C1, and D1 was 23.33 ± 4.92 (means ± SD), 42.89 ± 6.52, 55.78 ± 3.46, 53.61 ± 6.17, and 24.11 ± 9.07 vessels per optical field, respectively. There were statistically significant differences (p < .001) between Group O1 and A1 B1, C1, Group A1 and B1, C1, D1, Groups B1 and D1 and Groups C1 and D1, but not between Groups O1 and D1 (p = 1.000) and Groups B1 and C1 (p = .872). The long-term angiogenic activity of all the groups was significantly lower (p < .001) than in the corresponding early groups.

Conclusions

Although the angiogenic activity of all the groups decreased in the late assessment, the buccal mucosal graft continued to exhibit elevated angiogenesis above bladder or skin (free or pedicle) graft. Therefore, buccal mucosal patch graft might be preferable because of its easier harvesting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gardikis S, Giatromanolaki A, Ypsilantis P et al (2005) Comparison of angiogenic activities after urethral reconstruction using free grafts in rabbits. Eur Urol 47:417–421

    Article  PubMed  Google Scholar 

  2. Duckett JW, Coplen D, Ewalt D et al (1995) Buccal mucosal urethral replacement. J Urol 153:1660–1663

    Article  PubMed  CAS  Google Scholar 

  3. Dubey D, Vijjan V, Kapoor R et al (2007) Dorsal onlay buccal mucosa versus penile skin flap urethroplasty for anterior urethral strictures: results from a randomized prospective trial. J Urol 178:2466–2469

    Article  PubMed  Google Scholar 

  4. Atala A. (2008) Tissue engineering of the urethra. In: Brandes S.B (ed) Current clinical urology, urethral reconstructive surgery. Humana Press, Totowa, pp 337–345

  5. Bhargava S, Patterson JM, Inman RD et al (2008) Tissue-engineered buccal mucosa urethroplasty—clinical outcomes. Eur Urol 53:1263–1269

    Article  PubMed  Google Scholar 

  6. Raya-Rivera A, Esquiliano DR, Yoo JJ et al (2011) Tissue-engineered autologous urethras for patients who need reconstruction: an observational study. Lancet 377:1175–1182

    Article  PubMed  Google Scholar 

  7. Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9:653–660

    Article  PubMed  CAS  Google Scholar 

  8. Simons M (2005) Angiogenesis: where do we stand now? Circulation 111:1556–1566

    Article  PubMed  Google Scholar 

  9. Folkman J, Shing Y (1992) Angiogenesis. J Biol Chem 267:10931–10934

    PubMed  CAS  Google Scholar 

  10. Pu LL (2009) Discussion. Improvement of the survival of human autologous fat transplantation by using VEGF-transfected adipose-derived stem cells. Plast Reconstr Surg 124:1447–1449

    Article  PubMed  CAS  Google Scholar 

  11. Glotzbach JP, Levi B, Wong VW et al (2010) The basic science of vascular biology: implications for the practicing surgeon. Plast Reconstr Surg 126:1528–1538

    Article  PubMed  CAS  Google Scholar 

  12. Mitchell RN, Cotran RS (2003) Tissue repair: cell regeneration and fibrosis In: Kumar V, Cotran RS, Robbins SL (eds) Robbins basic pathology. Saunders, Philadelphia pp 61–78

  13. Nishimura T, Hashimoto H, Nakanishi I et al (2000) Microvascular angiogenesis and apoptosis in the survival of free fat grafts. Laryngoscope 110:1333–1338

    Article  PubMed  CAS  Google Scholar 

  14. Liapakis IE, Anagnostoulis S, Karayiannakis AJ et al (2008) Recombinant leptin administration improves early angiogenesis in full-thickness skin flaps: an experimental study. In Vivo 22:247–252

    PubMed  CAS  Google Scholar 

  15. Kambouri K, Gardikis S, Giatromanolaki A et al (2006) Comparison of angiogenic activity after urethral reconstruction using free grafts and pedicle flap: an experimental study. Eur J Pediatr Surg 16:323–328

    Article  PubMed  CAS  Google Scholar 

  16. Giatromanolaki A, Koukourakis M, O’Byrne K et al (1996) Prognostic value of angiogenesis in operable nonsmall cell lung cancer. J Pathol 179:80–88

    Article  PubMed  CAS  Google Scholar 

  17. Bhargava S, Chapple CR (2004) Buccal mucosal urethroplasty: is it the new gold standard? BJU Int 93:1191–1193

    Article  PubMed  CAS  Google Scholar 

  18. Mangera A, Patterson JM, Chapple CR (2011) A Systematic review of graft augmentation urethroplasty techniques for the treatment of anterior urethral strictures. Eur Urol 59:797–814

    Article  PubMed  Google Scholar 

  19. Akhavani MA, Sivakumar B, Paleolog EM et al (2008) Angiogenesis and plastic surgery. J Plastic Reconstr Aesthet Surg 61:1425–1437

    Article  Google Scholar 

  20. Shweiki D, Itin A, Soffer D et al (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359:843–845

    Article  PubMed  CAS  Google Scholar 

  21. Lindenblatt N, Calcagni M, Contaldo C et al (2008) A new model for studying the revascularization of skin grafts in vivo: the role of angiogenesis. Plast Reconstr Surg 122:1669–1680

    Article  PubMed  CAS  Google Scholar 

  22. Filipas D, Fisch M, Fichtner J et al (1999) The histology and immunohistochemistry of free buccal mucosa and full-skin grafts after exposure to urine. BJU Int 84:108–111

    Article  PubMed  CAS  Google Scholar 

  23. Souza GF, Calado AA, Delcelo R et al (2008) Histopathological evaluation of urethroplasty with dorsal buccal mucosa: an experimental study in rabbits. Int Braz J Urol 34:345–351

    Article  PubMed  Google Scholar 

  24. Fichtner J, Filipas D, Fisch M et al (2004) Long-term outcome of ventral buccal mucosa onlay graft urethroplasty for urethral stricture repair: analysis of complications. Urology 64:648–650

    Article  PubMed  Google Scholar 

  25. Patterson JM, Chapple CR (2008) Surgical techniques in substitution urethroplasty using buccal mucosa for the treatment of anterior urethral strictures. Eur Urol 53:1162–1171

    Article  PubMed  Google Scholar 

  26. Andrich DE, Dunglison N, Greenwell TJ et al (2003) The long term results of urethroplasty. J Urol 170:90–92

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Vaos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaos, G., Gardikis, S., Giatromanolaki, A. et al. Long-term angiogenic activity of free grafts and pedicle flap in a rabbit urethroplasty model. World J Urol 31, 919–924 (2013). https://doi.org/10.1007/s00345-012-0875-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-012-0875-4

Keywords

Navigation