Skip to main content
Log in

Hydrogen Peroxide and Strigolactones Signaling Are Involved in Alleviation of Salt Stress Induced by Arbuscular Mycorrhizal Fungus in Sesbania cannabina Seedlings

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The arbuscular mycorrhizal symbiosis can alleviate salt stress in plants by altering strigolactone levels in the host plant. The aim of this study was to investigate the mechanism by which strigolactones enhance salt stress tolerance in arbuscular mycorrhizal Sesbania cannabina seedlings. Strigolactone levels, as determined by means of germination bioassay, gradually increased with treatment time of NaCl applied. Inhibition of NADPH oxidase activity and chemical scavenging of H2O2 significantly reduced strigolactone-induced salt tolerance and decreased strigolactone levels. The H2O2-induced strigolactone accumulation was accompanied by increased tolerance to salt stress. These results strongly indicated that elevated H2O2 concentration resulting from enhanced NADPH oxidase activity regulated strigolactone-induced salt stress tolerance in arbuscular mycorrhizal S. cannabina seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  CAS  PubMed  Google Scholar 

  • Andreo-Jiménez B, Ruyter-Spira C, Bouwmeester H López-Ráez JA (2015) Ecological relevance of strigolactones in nutrient uptake and other abiotic stresses, and in plant-microbe interactions below-ground. Plant Soil 394:1–19

    Article  Google Scholar 

  • Aroca R, Ruiz-Lozano JM, Zamarreño AM, Paz JA, García-Mina JM, Pozo MJ, López-Ráez JA (2013) Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J Plant Physiol 170:47–55

    Article  CAS  PubMed  Google Scholar 

  • Badri DV, Weir TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant–microbe interactions. Curr Opin Biotechnol 20:642–650

    Article  CAS  PubMed  Google Scholar 

  • Brennan T, Frenkel C (1977) Involvement of hydrogen peroxide in the regulation of senecence in pear. Plant Physiol 59:411–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bu Q, Lv T, Shen H, Luong P, Wang J, Wang Z, Huang Z, Xiao L, Engineer C, Kim TH, Schroeder JI, Huq E (2014) Regulation of drought tolerance by the F-box protein MAX2 in Arabidopsis. Plant Physiol 164:424–439

    Article  CAS  PubMed  Google Scholar 

  • Cheeseman JM (2007) Hydrogen peroxide and plant stress: a challenging relationship. Plant Stress 1:4–15

    Google Scholar 

  • Cuyper CD, Fromentin J, Yocgo RE, Keyser AD, Guillotin B, Kunert K, Boyer FD, Goormachtig S (2014) From lateral root density to nodule number, the strigolactone analogue GR24 shapes the root architecture of Medicago truncatula. J Exp Bot 66:137–146

    Article  PubMed  Google Scholar 

  • De Almeida AMM, Gomes VFF, Mendes PF, de Lacerda CF, Freitas ED (2016) Influence of salinity on the development of the banana colonized by arbuscular mycorrhizal fungi. Rev Cienc Agronomica 47:421–428

    Article  Google Scholar 

  • Garg N, Bhandari P (2012) Influence of cadmium stress and arbuscular mycorrhizal fungi on nodule senescence in Cajanus cajan (L.) Millsp. Int J Phytoremediation 14:62–74

    Article  PubMed  Google Scholar 

  • Gechev TS, Van Breusegem F, Stone JM, Denev I, Laloi C (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays 28:1091–1101

    Article  CAS  PubMed  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular–arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Gomez- Roldan V, Fermas S, Philip BB et al (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194

    Article  CAS  PubMed  Google Scholar 

  • Ha C V, Leyva-Gonzalez MA, Osakabe Y, Tran UT, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Yamaguchi S, Dong NV, Yamaguchi-Shinozaki K, Shinozaki K, Herrera-Estrella L, Tran LSP (2014) Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc Natl Acad Sci 111:851–856

    Article  PubMed  Google Scholar 

  • Hajiboland R, Aliasgharzadeh N, Laiegh SF, Poschenrieder C (2010) Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil 331:313–327

    Article  CAS  Google Scholar 

  • Ito S, Umehara M, Hanada A, Kitahata N, Hayase H, Yamaguchi S, et al (2011) Effects of triazole derivatives on strigolactone levels and growth retardation in rice. PLoS ONE doi:10.1371/journal.pone0021723

    Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623–2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, He H, Vitali M, Visentin I, Charnikhova T, Haider I, Schubert A, Ruyter-Spira C, Bouwmeester HJ, Lovisolo C, Cardinale F (2015) Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: exploring the interaction between strigolactones and ABA under abiotic stress. Planta 241:1435–1451

    Article  CAS  PubMed  Google Scholar 

  • López-Ráez JA, Charnikhova T, Gómez-Roldán V, Matusova R, Kohlen W, De Vos R, Verstappen F, Puech-Pages V, Bécard G, Mulder P, Bouwmeester H (2008) Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol 178:863–874

    Article  PubMed  Google Scholar 

  • López-Ráez JA, Pozo MJ, García-Garrido JM (2011) Strigolactones: a cry for help in the rhizosphere. Botany 89:513–522

    Article  Google Scholar 

  • Manivannan P, Jaleel CA, Sankar B, Somasundaram R, Mural P V, Sridharan R, Panneerselvam R (2007) Salt stress mitigation by calicium chloride in Vigna radiata (L.) Wilczek. Acta Biol Crac Ser Bot 49:105–109.

    Google Scholar 

  • Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signalling. Curr Opin Plant Biol 5:388–395

    Article  CAS  PubMed  Google Scholar 

  • Phillips J M, Hayman D S (1970) Improved procedures for clearing roots and staining parasitic and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Brit Mycol Soc 55:158–161

    Article  Google Scholar 

  • Pozo MJ, López-Ráez JA, Azcón C, García-Garrido JM (2015) Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytol 205:1431–1436

    Article  CAS  PubMed  Google Scholar 

  • Ren CG, Dai CC (2012) Jasmonic acid is involved in the signaling pathway for fungal endophyte-induced volatile oil accumulation of Atractylodes lancea plantlets. Plant Biol 12:128

    CAS  Google Scholar 

  • Ren CG, Bai YJ, Kong CC, Bian B, Xie ZH (2016) Synergistic interactions between salt-tolerant rhizobia and arbuscular mycorrhizal fungi on salinity tolerance of Sesbania cannabina plant. J Plant growth Regul. doi:10.1007/s00344-016-9607-0

    Google Scholar 

  • Ruiz-Lozano JM, Aroca R, Zamarreño ÁM, Molina S, Andreo-Jiménez B, Porcel R, García-Mina JM, Ruyter-Spira C, López-Ráez JA (2016) Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant Cell Environ 39:441–452

    Article  CAS  PubMed  Google Scholar 

  • Ruyter-Spira C, Al-Babili S, van der Krol S, Bouwmeester H (2013) The biology of strigolactones. Trends Plant Sci 18:72–83

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, London.

    Google Scholar 

  • Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403

    Article  CAS  PubMed  Google Scholar 

  • Walter MH, Strack D (2011) Carotenoids and their cleavage products: biosynthesis and functions. Nat Prod Rep 28:663–692

    Article  CAS  PubMed  Google Scholar 

  • Xia XJ, Wang YJ, Zhou YH, Tao Y, Mao WH, Shi K, Asami T, Chen ZX, Yu JQ (2009) Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol 150:801–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia XJ, Zhou YH, Ding J, Shi K, Asami T, Chen ZX, Yu JQ (2011) Induction of systemic stress tolerance by brassinosteroid in Cucumis sativus. New Phytol 191:706–720

    Article  CAS  PubMed  Google Scholar 

  • Xie XN, Yoneyama K, Yoneyama K (2010) The strigolactone story. Annu Rev Phytopathol 48:93–117

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Schumaker K S, Zhu J K (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14(suppl 1):S165–S183

  • Yoneyama K, Xie X, Sekimoto H, Takeuchi Y, Ogasawara S, Akiyama K, Hayashi H (2008) Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants. New Phytol 179:484–494

    Article  CAS  PubMed  Google Scholar 

  • Yoneyama K, Xie X, Yoneyama K, Takeuchi Y (2009) Strigolactones: structures and biological activities. Pest Manage Sci 65:467–470

    Article  CAS  Google Scholar 

  • Zhou J, Wang J, Li X, Xia XJ, Zhou YH, Shi K, Chen Z, Yu JQ (2014) H2O2 mediates the crosstalk of brassinosteroid and abscisic acid in tomato responses to heat and oxidative stresses. J Exp Bot 65:4371–4383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financed by the Key Research Program of the Chinese Academy of Sciences (Grant NO. KZZD-EW-14), the National Natural Science Foundation of China (31601238, 31370108, 31570063, and 31201266), One Hundred-Talent Plan of Chinese Academy of Sciences (CAS), Yantai Key Project of Research and Development Plan (2016ZH074). Yantai Science and Technology Project (2013JH021). The National “948” Project of China (#2014-Z39), Shanxi Province Key Project of Coal-based Science and Technology (#FT-2014-01). We thank Professors Hui Lin and Bing Zhao for kindly providing arbuscular mycorrhiza strains. We also thank Professor Yong-Qing Ma (North West Agriculture and Forestry University) for supplying the seeds of Phelipanche ramose.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-Hong Xie or Ji-Ping Wang.

Additional information

Cun-Cui Kong, Cheng-Gang Ren have contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 89 KB)

Supplementary material 2 (XLS 26 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, CC., Ren, CG., Li, RZ. et al. Hydrogen Peroxide and Strigolactones Signaling Are Involved in Alleviation of Salt Stress Induced by Arbuscular Mycorrhizal Fungus in Sesbania cannabina Seedlings. J Plant Growth Regul 36, 734–742 (2017). https://doi.org/10.1007/s00344-017-9675-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-017-9675-9

Keywords

Navigation