Skip to main content
Log in

Identification of paralytic shellfish toxin-producing microalgae using machine learning and deep learning methods

  • Marine Harmful Microalgae
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Paralytic shellfish poisoning (PSP) microalgae, as one of the harmful algal blooms, causes great damage to the offshore fishery, marine culture, and marine ecological environment. At present, there is no technique for real-time accurate identification of toxic microalgae, by combining three-dimensional fluorescence with machine learning (ML) and deep learning (DL), we developed methods to classify the PSP and non-PSP microalgae. The average classification accuracies of these two methods for microalgae are above 90%, and the accuracies for discriminating 12 microalgae species in PSP and non-PSP microalgae are above 94%. When the emission wavelength is 650–690 nm, the fluorescence characteristics bands (excitation wavelength) occur differently at 410–180 nm and 500–560 nm for PSP and non-PSP microalgae, respectively. The identification accuracies of ML models (support vector machine (SVM), and k-nearest neighbor rule (k-NN)), and DL model (convolutional neural network (CNN)) to PSP microalgae are 96.25%, 96.36%, and 95.88% respectively, indicating that ML and DL are suitable for the classification of toxic microalgae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aas K, Eikvil L. 1999. Text Categorization: A Survey. Norwegian Computing Center.

  • Alexander R, Gikuma-Njuru P, Imberger J. 2012. Identifying spatial structure in phytoplankton communities using multi-wavelength fluorescence spectral data and principal component analysis. Limnology and Oceanography. Methods, 10(6): 402–415, https://doi.org/10.4319/lom.2012.10.402.

    Article  Google Scholar 

  • Alimjan G, Sun T L, Liang Y et al. 2018. A new technique for remote sensing image classification based on combinatorial algorithm of SVM and KNN. International Journal of Pattern Recognition and Artificial Intelligence, 32(7): 1859012, https://doi.org/10.1142/S0218001418590127.

    Article  Google Scholar 

  • Alizadeh J M, Kavianpour M R, Danesh M et al. 2018. Effect of river flow on the quality of estuarine and coastal waters using machine learning models. Engineering Applications of Computational Fluid Mechanics, 12(1): 810–823, https://doi.org/10.1080/19942060.2018.1528480.

    Article  Google Scholar 

  • Anderson D M, Cembella A D, Hallegraeff G M. 2012a. Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Annual Review of Marine Science, 4: 143–176, https://doi.org/10.1146/annurevmarine-120308-081121.

    Article  Google Scholar 

  • Anderson D M, Alpermann T J, Cembella A D et al. 2012b. The globally distributed genus Alexandrium: multifaceted roles in marine ecosystems and impacts on human health. Harmful Algae, 14: 10–35, https://doi.org/10.1016/j.hal.2011.10.012.

    Article  Google Scholar 

  • Andrinolo D, Michea L F, Lagos N. 1999. Toxic effects, pharmacokinetics and clearance of saxitoxin, a component of paralytic shellfish poison (PSP), in cats. Toxicon, 37(3): 447–464, https://doi.org/10.1016/S0041-0101(98)00173-1.

    Article  Google Scholar 

  • Bahram M, Bro R, Stedmon C et al. 2006. Handling of Rayleigh and Raman scatter for PARAFAC modeling of fluorescence data using interpolation. Journal of Chemometrics, 20(3–4): 99–105, https://doi.org/10.1002/cem.978.

    Article  Google Scholar 

  • Beutler M, Wiltshire K H, Meyer B et al. 2002. A fluorometric method for the differentiation of algal populations in vivo and in situ. Photosynthesis Research, 72(1): 39–53, https://doi.org/10.1023/A:1016026607048.

    Article  Google Scholar 

  • Bidigare R R, Ondrusek M E, Morrow J H et al. 1990. In-vivo absorption properties of algal pigments. In: Proceedings of SPIE 1302, Ocean Optics X. SPIE, Orlando, USA. p.290–302, https://doi.org/10.1117/12.21451.

    Google Scholar 

  • Boser B E, Guyon I M, Vapnik V N. 1992. A training algorithm for optimal margin classifiers. In: Proceedings of the 5th Annual Workshop on Computational Learning Theory. ACM, Pittsburgh, USA. p.144–152, https://doi.org/10.1145/130385.130401.

    Google Scholar 

  • Buhmann M D. 2000. Radial basis functions. Acta Numerica, 9: 1–38.

    Article  Google Scholar 

  • Cai Q S, Li R X, Zhen Y et al. 2006. Detection of two Prorocentrum species using sandwich hybridization integrated with nuclease protection assay. Harmful Algae, 5(3): 300–309, https://doi.org/10.1016/j.hal.2005.08.002.

    Article  Google Scholar 

  • Cao J R, Huan Q L, Wu N et al. 2015. Effects of temperature, light intensity and nutrient condition on the growth and hemolytic activity of six species of typical ichthyotoxic algae. Marine Environmental Science, 34(3): 321–329. (in Chinese with English abstract)

    Google Scholar 

  • Cherkassky V. 1997. The nature of statistical learning theory. IEEE Transactions on Neural Networks, 8(6): 1564, https://doi.org/10.1109/TNN.1997.641482.

    Article  Google Scholar 

  • Cortes C, Vapnik V N. 1995. Support-vector networks. Machine Learning, 20(3): 273–297, https://doi.org/10.1007/BF00994018.

    Article  Google Scholar 

  • Cover T M. 1968. Estimation by the nearest neighbor rule. IEEE Transactions on Information Theory, 14(1): 50–55, https://doi.org/10.1109/TIT.1968.1054098.

    Article  Google Scholar 

  • Cusick K D, Sayler G S. 2013. An overview on the marine neurotoxin, saxitoxin: genetics, molecular targets, methods of detection and ecological functions. Marine Drugs, 11(4): 991–1018, https://doi.org/10.3390/md11040991.

    Article  Google Scholar 

  • Divya O, Mishra A K. 2007. Multivariate methods on the excitation emission matrix fluorescence spectroscopic data of diesel-kerosene mixtures: a comparative study. Analytica Chimica Acta, 592(1): 82–90, https://doi.org/10.1016/j.aca.2007.03.079.

    Article  Google Scholar 

  • Duan Y L, Su R G, Shi X Y et al. 2012. Differentiation of phytoplankton populations by in vivo fluorescence based on high-frequency component of wavelet. Chinese Journal of Lasers, 39(7): 0715003. (in Chinese with English abstract)

    Article  Google Scholar 

  • Guillard R R L, Ryther J H. 1962. Studies of marine planktonic diatoms: I. Cyclotella nana hustedt, and Detonula confervacea (cleve) gran. Canadian Journal of Microbiology, 8(2): 229–239, https://doi.org/10.1139/m62-029.

    Article  Google Scholar 

  • Hallegraeff G M. 1993. A review of harmful algal blooms and their apparent global increase. Phycologia, 32(2): 79–99, https://doi.org/10.2216/i0031-8884-32-2-79.1.

    Article  Google Scholar 

  • Han J, Park J S, Park Y et al. 2021. Effects of paralytic shellfish poisoning toxin-producing dinoflagellate Gymnodinium catenatum on the marine copepod Tigriopus japonicus. Marine Pollution Bulletin, 163: 111937, https://doi.org/10.1016/j.marpolbul.2020.111937.

    Article  Google Scholar 

  • Hingane M C, Matkar S B, Mane A B et al. 2015. Classification of MRI brain image using SVM classifier. IJSTE -International Journal of Science Technology & Engineering, 1(9): 24–28.

    Google Scholar 

  • Huan Q, Huang X, Wu N et al. 2013. Identification of Ichthyotoxic Microalgae Species and Its Hemolytic Activity by Three-Dimensional Fluorescence Spectra. Spectroscopy and Spectral Analysis, 33(2): 399–403. (in Chinese with English abstract)

    Google Scholar 

  • Ignatiades L, Gotsis-Skretas O. 2010. A review on toxic and harmful algae in Greek Coastal Waters (E. Mediterranean Sea). Toxins, 2(5): 1019–1037, https://doi.org/10.3390/toxins2051019.

    Article  Google Scholar 

  • Jaeckisch N, Yang I, Wohlrab S et al. 2011. Comparative genomic and transcriptomic characterization of the toxigenic marine dinoflagellate Alexandrium ostenfeldii. PLoS One, 6(12): e28012, https://doi.org/10.1371/journal.pone.0028012.

    Article  Google Scholar 

  • Jeffrey S W, Hallegraeff G M. 1980. Studies of phytoplankton species and photosynthetic pigments in a warm core eddy of the East Australian Current. I. Summer populations. Marine Ecology Progress Series, 3: 285–294, https://doi.org/10.3354/meps003285.

    Article  Google Scholar 

  • Jiang T, Wang R, Wu N et al. 2011. Study on hemolytic activity of Chattonella marina Hong Kong strain. Environmental Science, 32(10): 2920–2925. (in Chinese with English abstract)

    Google Scholar 

  • Johnsen G, Samset O, Granskog L et al. 1994. In vivo absorption characteristics in 10 classes of bloom-forming phytoplankton: taxonomic characteristics and responses to photoadaptation by means of discriminant and HPLC analysis. Marine Ecology Progress Series, 105: 149–157, https://doi.org/10.3354/meps105149.

    Article  Google Scholar 

  • Kellmann R, Mihali T K, Jeon Y J et al. 2008. Biosynthetic intermediate analysis and functional homology reveal a saxitoxin gene cluster in cyanobacteria. Applied and Environmental Microbiology, 74(13): 4044–4053, https://doi.org/10.1128/AEM.00353-08.

    Article  Google Scholar 

  • Kotaki Y, Tajiri M, Oshima Y et al. 1983. Identification of a calcareous red alga as the primary source of paralytic shellfish toxins in coral reef crabs and gastropods. Bulletin of the Japanese Society of Scientific Fisheries, 49(2): 283–286, https://doi.org/10.2331/suisan.49.283.

    Article  Google Scholar 

  • Kumar M S, Sharma S A. 2021. Toxicological effects of marine seaweeds: a cautious insight for human consumption. Critical Reviews in Food Science and Nutrition, 61(3): 500–521, https://doi.org/10.1080/10408398.2020.1738334.

    Article  Google Scholar 

  • LeCun Y. 1992. A theoretical framework for back-propagation. In: Mehra P, Wah B eds. Artificial Neural Networks: Concepts and Theory. IEEE, Los Alamitos.

    Google Scholar 

  • LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature, 521(7553): 436–444, https://doi.org/10.1038/nature14539.

    Article  Google Scholar 

  • LeCun Y, Boser B, Denker J S et al. 1989a. Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4): 541–551.

    Article  Google Scholar 

  • LeCun Y, Boser B, Denker J S et al. 1989b. Handwritten digit recognition with a back-propagation network. In: Proceedings of the 2nd International Conference on Neural Information Processing Systems. Morgan Kaufmann, Denver, USA. p.396–404.

    Google Scholar 

  • LeCun Y, Bottou L, Bengio Y et al. 1998. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11): 2278–2324, https://doi.org/10.1109/5.726791.

    Article  Google Scholar 

  • Lee T Y, Tsuzuki M, Takeuchi T et al. 1995. Quantitative determination of cyanobacteria in mixed phytoplankton assemblages by an in vivo fluorimetric method. Analytica Chimica Acta, 302(1): 81–87, https://doi.org/10.1016/0003-2670(94)00425-L.

    Article  Google Scholar 

  • Louchard E M. Reid R P, Stephens C F et al. 2002. Derivative analysis of absorption features in hyperspectral remote sensing data of carbonate sediments. Optics Express, 10(26): 1573–1584, https://doi.org/10.1364/OE.10.001573.

    Article  Google Scholar 

  • Lu L. 2007. Study on Fluorescence Spectra for Identifying Phytoplankton Community. Ocean University of China, Qingdao, China. (in Chinese with English abstract)

    Google Scholar 

  • Lü G C, Zhao W H, Wang J T. 2011. Applications of three-dimensional fluorescence spectrum of dissolved organic matter to identification of red tide algae. Spectroscopy and Spectral Analysis, 31(1): 141–144. (in Chinese with English abstract)

    Google Scholar 

  • Ma Y M, Gao J Y, Wang Q H. 2007. Forecast model for red tide on artificial neural network. Marine Forecasts, 24(1): 38–44. (in Chinese with English abstract)

    Google Scholar 

  • Masó M, Garcés E. 2006. Harmful microalgae blooms (HAB); problematic and conditions that induce them. Marine Pollution Bulletin, 53(10–12): 620–630, https://doi.org/10.1016/j.marpolbul.2006.08.006.

    Article  Google Scholar 

  • Merry R J E. 2005. Wavelet Theory and Applications: A Literature Study. Eindhoven University of Technology Department of Mechanical Engineering Control Systems Technology Group.

  • Millie D F, Schofield O M, Kirkpatrick G J et al. 1997. Detection of harmful algal blooms using photopigments and absorption signatures: a case study of the Florida red tide dinoflagellate, Gymnodinium breve. Limnology and Oceanography, 42(5): 1240–1251, https://doi.org/10.4319/lo.1997.42.5_part_2.1240.

    Article  Google Scholar 

  • Moberg L, Karlberg B, Sørensen K et al. 2002. Assessment of phytoplankton class abundance using absorption spectra and chemometrics. Talanta, 56(1): 153–160, https://doi.org/10.1016/S0039-9140(01)00555-0.

    Article  Google Scholar 

  • Mosavi A, Salimi M, Faizollahzadeh Ardabili S et al. 2019. State of the art of machine learning models in energy systems, a systematic review. Energies, 12(7): 1301, https://doi.org/10.3390/en12071301.

    Article  Google Scholar 

  • O’Neil J M, Davis T W, Burford M A et al. 2012. The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae, 14: 313–334, https://doi.org/10.1016/j.hal.2011.10.027.

    Article  Google Scholar 

  • Ozawa T, Ishihara S, Fujishiro M et al. 2020. Automated endoscopic detection and classification of colorectal polyps using convolutional neural networks. Therapeutic Advances in Gastroenterology, 13: 175628482091065, https://doi.org/10.1177/1756284820910659.

    Article  Google Scholar 

  • Paerl H W, Gardner W S, Havens K E et al. 2016. Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients. Harmful Algae, 54: 213–222, https://doi.org/10.1016/j.hal.2015.09.009.

    Article  Google Scholar 

  • Poryvkina L, Babichenko S, Leeben A. 2000. Analysis of phytoplankton pigments by excitation spectra of fluorescence. In: Proceedings of EARSeL-SIG-Workshop LIDAR. FRG, Dresden, Germany. p.224–232.

    Google Scholar 

  • Qi X L, Wu Z Z, Zhang C S et al. 2016. A fluorescence technology for discriminating toxic algae by support sector machine regression. Periodical of Ocean University of China, 46(12): 73–80. (in Chinese with English abstract)

    Google Scholar 

  • Raphael A, Dubinsky Z, Iluz D et al. 2020. Deep neural network recognition of shallow water corals in the Gulf of Eilat (Aqaba). Scientific Reports, 10(1): 12959, https://doi.org/10.1038/s41598-020-69201-w.

    Article  Google Scholar 

  • Rasmussen S A, Andersen A J C, Andersen N G et al. 2016. Chemical diversity, origin, and analysis of phycotoxins. Journal of Natural Products, 79(3): 662–673, https://doi.org/10.1021/acs.jnatprod.5b01066.

    Article  Google Scholar 

  • Sebastiani F. 2002. Machine learning in automated text categorization. ACM Computing Surveys, 34(1): 1–47.

    Article  Google Scholar 

  • Seppälä J, Olli K. 2008. Multivariate analysis of phytoplankton spectral in vivo fluorescence: estimation of phytoplankton biomass during a mesocosm study in the Baltic Sea. Marine Ecology Progress Series, 370: 69–85, https://doi.org/10.3354/meps07647.

    Article  Google Scholar 

  • Sommer H, Monnier R P, Riegel B et al. 1948. Paralytic shellfish poison. I. Occurrence and concentration by ion exchange. Journal of the American Chemical Society, 70(3): 1015–1018, https://doi.org/10.1021/ja01183a038.

    Article  Google Scholar 

  • Sommer H, Whedonc W F, Kofoid A et al. 1937. Relation of paralytic shellfish poison to certain plankton organisms of the genus Gonyaulax. Archives of Pathology, 24(5): 537–559.

    Google Scholar 

  • Sultana F, Sufian A, Dutta P. 2019. Advancements in image classification using convolutional neural network. IEEE, https://doi.org/10.1109/ICRCICN.2018.8718718.

  • Tang X H, Yu R C. Zhou M J et al. 2012. Application of rRNA probes and fluorescence in situ hybridization for rapid detection of the toxic dinoflagellate Alexandrium minutum. Chinese Journal of Oceanology and Limnology, 30(2): 256–263, https://doi.org/10.1007/s00343-012-1142-7.

    Article  Google Scholar 

  • Taroncher-Oldenburg G, Kulis D M, Anderson D M. 1997. Toxin variability during the cell cycle of the dinoflagellate Alexandrium fundyense. Limnology and Oceanography, 42(5): 1178–1188, https://doi.org/10.4319/lo.1997.42.5_part_2.1178.

    Article  Google Scholar 

  • Taroncher-Oldenburg G, Kulis D M, Anderson D M. 1999. Coupling of saxitoxin biosynthesis to the G1 phase of the cell cycle in the dinoflagellate Alexandrin fundyense: temperature and nutrient effects. Natural Toxins, 7(5): 207–219, https://doi.org/10.1002/1522-7189(200009/10)7:5<207::AID-NT61>3.0.CO;2-Q.

    Article  Google Scholar 

  • Van Dolah F M, Roelke D, Greene R M. 2001. Health and ecological impacts of harmful algal blooms: risk assessment needs. Human and Ecological Risk Assessment: An International Journal, 7(5): 1329–1345, https://doi.org/10.1080/20018091095032.

    Article  Google Scholar 

  • Vishwanathan S V M, Narasimha Murty M. 2002. SSVM: a simple SVM algorithm. In: Proceedings of 2002 International Joint Conference on Neural Networks. IEEE, Honolulu, USA. p.2393–2398.

    Google Scholar 

  • Wang L, Xu X, Dong H et al. 2018. Multi-pixel simultaneous classification of PolSAR image using convolutional neural networks. Sensors (Basel), 18(3): 769, https://doi.org/10.3390/s18030769.

    Article  Google Scholar 

  • Wang Q, Pang W J, Mao Y D et al. 2020. Changes of extracellular polymeric substance (EPS) during Microcystis aeruginosa blooms at different levels of nutrients in a eutrophic microcosmic simulation device. Polish Journal of Environmental Studies, 29(1): 349–360, https://doi.org/10.15244/pjoes/102367.

    Article  Google Scholar 

  • Xu C M, Jackson S A. 2019. Machine learning and complex biological data. Genome Biology, 20(1): 76, https://doi.org/10.1186/s13059-019-1689-0.

    Article  Google Scholar 

  • Yang I, John U, Beszteri S. 2010. Comparative gene expression in toxic versus non-toxic strains of the marine dinoflagellate Alexandrium minutum. BMC Genomics, 11: 248.

    Article  Google Scholar 

  • Yang P, Li X L. 1998. Study on marine algal toxic food poisoning (review). Chinese Journal of Food Hygiene, 10(1): 40–43, 45. (in Chinese)

    Google Scholar 

  • Zavala-Mondragon L A, Lamichhane B, Zhang L et al. 2020. CNN-SkelPose: a CNN-based skeleton estimation algorithm for clinical applications. Journal of Ambient Intelligence and Humanized Computing, 11(6): 2369–2380, https://doi.org/10.1007/s12652-019-01259-5.

    Article  Google Scholar 

  • Zepp R G, Sheldon W M, Moran M A. 2004. Dissolved organic fluorophores in southeastern US coastal waters: correction method for eliminating Rayleigh and Raman scattering peaks in excitation-emission matrices. Marine Chemistry, 89(1–4): 15–36, https://doi.org/10.1016/j.marchem.2004.02.006.

    Article  Google Scholar 

  • Zhang F, Su R, Wang X Z et al. 2008. Fluorescence Characteristics Extraction and Differentiation of Phytoplankton. Chinese Journal of Lasers, 35(12). (in Chinese with English abstract)

  • Zhang J, Qiu H, Li X Y et al. 2018a. Real-time nowcasting of microbiological water quality at recreational beaches: a wavelet and artificial neural network-based hybrid modeling approach. Environmental Science & Technology, 52(15): 8446–8455, https://doi.org/10.1021/acs.est.8b01022.

    Article  Google Scholar 

  • Zhang S F, Zhang Y, Lin L et al. 2018b. iTRAQ-Based quantitative proteomic analysis of a toxigenic dinoflagellate Alexandrium catenella at different stages of toxin biosynthesis during the cell cycle. Marine Drugs, 16(12): 491, https://doi.org/10.3390/md16120491.

    Article  Google Scholar 

  • Zhuang J X, Cai J B, Wang R X et al. 2020. Deep kNN for medical image classification. In: Proceedings of the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Lima, Peru. p.127–136, https://doi.org/10.1007/978-3-030-59710-8_13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Niu or Tianjiu Jiang.

Additional information

Supported by the National Natural Science Foundation of China (No. 41972244), partially supported by the Science and Technology Basic Resources Survey of the Ministry of Science and Technology (No. 2018FY100201), and the National Key Research and Development Program (No. 2019YFC1407900) to Siyu GOU, Shuai ZHANG, Wenyu GAN, and Tianjiu JIANG

Data Availability Statement

The raw data and code supporting the conclusions of this article will be made available by the authors once it was accepted for publication, without undue reservation.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Niu, J., Gan, W. et al. Identification of paralytic shellfish toxin-producing microalgae using machine learning and deep learning methods. J. Ocean. Limnol. 40, 2202–2217 (2022). https://doi.org/10.1007/s00343-022-1312-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-022-1312-1

Keyword

Navigation