Skip to main content
Log in

Characterization of Amphidinium (Amphidiniales, Dinophyceae) species from the China Sea based on morphological, molecular, and pigment data

  • Biology
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Amphidinium species are amongst the most abundant benthic dinoflagellates in marine intertidal sandy ecosystems. Some of them are able to produce a variety of bioactive compounds that can have both harmful effects and pharmaceutical potentials. The diversity of Amphidinium in shallow waters along the Chinese coast was investigated by isolating single cells from sand, coral, and macroalgal samples collected from 2012 to 2020. Their morphologies were subjected to examination using light microscopy (LM) and scanning electron microscopy (SEM). A total of 74 Amphidinium strains were morphologically identified, belonging to 11 species: A. carterae, A. gibbosum, A. operculatum, A. massartii, A. cf. massartii, A. fijiensis, A. pseudomassartii, A. steinii, A. thermaeum, A. theodori, A. tomasii, as well as an undefined species. The last seven species have not been previously reported in Chinese waters. Amphidinium carterae subclades I, II, and IV were found in the South China Sea, while subclade III was only found in the Yellow Sea. Threadlike body scales were observed on the surface of subclades III and V, supporting the idea that A. carterae might contain several different species. Large subunit ribosomal RNA (LSU rRNA) sequences-based phylogeny revealed two groups (Groups I and II) within Amphidinium, which is consistent with the relative position of sulcus (in touch with cingulum or not). In addition, large differences in morphology and molecular phylogeny between A. operculatum (the type species of Amphidinium) and other species, suggest that a subdivision of Amphidinium might be needed. The pigment profiles of all available strains were analyzed by high performance liquid chromatography (HPLC). Eleven pigments, including peridinin, diadinoxanthin, diatoxanthin, pheophorbide (and pheophorbide a), antheraxanthin, β-carotene, and four different chlorophylls were detected. The high pheophorbide/pheophorbide a ratio in Amphidinium implies that it may be a good candidate as a natural source of photosensitizers, a well-known anticancer drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon request.

References

  • Adachi M, Sake Y, Ishida Y. 1996. Analysis of Alexandrium (Dinophyceae) species using sequences of the 5.8S ribosomal DNA and internal transcribed spacer regions. Journal of Phycology, 32(3): 424–432, https://doi.org/10.1111/j.0022-3646.1996.00424.x.

    Article  Google Scholar 

  • Barlow S B, Triemer R E. 1988. Alternate life history stages in Amphidinium klebsii (Dinophyceae, Pyrrophyta). Phycologia, 27(3): 413–420, https://doi.org/10.2216/i0031-8884-27-3-413.1.

    Article  Google Scholar 

  • Bauer I, Maranda L, Young K A, Shimizu Y, Fairchild C, Cornell L, MacBeth J, Huang S. 1995. Isolation and structure of Caribenolide I, a highly potent antitumor macrolide from a cultured free-swimming caribbean dinoflagellate, Amphidinium sp. S1-36-5. The Journal of Organic Chemistry, 60(4): 1084–1086, https://doi.org/10.1021/jo00109a050.

    Article  Google Scholar 

  • Biecheler B. 1952. Recherches sur les Péridiniens. Bulletin Biologique de la France et de la Belgique, 36(Suppl.): 1–149.

    Google Scholar 

  • Boc A, Diallo A B, Makarenkov V. 2012. T-REX: a web server for inferring, validating and visualizing phylogenetic trees and networks. Nucleic Acids Research, 40(W1): W573–W579, https://doi.org/10.1093/nar/gks485.

    Article  Google Scholar 

  • Calado A J, Craveiro S C, Moestrup Ø. 1998. Taxonomy and ultrastructure of a freshwater, heterotrophic Amphidinium (Dinophyceae) that feeds on unicellular protists. Journal of Phycology, 34(3): 536–554, https://doi.org/10.1046/j.1529-8817.1998.340536.X.

    Article  Google Scholar 

  • Carroll H, Beckstead W, O’Connor T, Ebbert M, Clement M, Snell Q, McClellan D. 2007. DNA reference alignment benchmarks based on tertiary structure of encoded proteins. Bioinformatics, 23(19): 2648–2649, https://doi.org/10.1093/bioinformatics/btm389.

    Article  Google Scholar 

  • Carter N. 1937. New or interesting algae from brackish water. Archiv für Protistenkunde, 90: 1–68.

    Google Scholar 

  • Cavalier-Smith T. 1992. The origin, losses and gains of chloroplasts. In: Lewin R A ed. Origins of Plastids: Symbiogenesis, Prochlorophytes and the Origins of Chloroplasts. Springer, Boston. p.291–348, https://doi.org/10.1007/978-1-4615-2818-0_15.

    Chapter  Google Scholar 

  • Chan J Y W, Tang P M K, Hon P M, Au S W N, Tsui S K W, Waye M M Y, Kong S K, Mak T C W, Fung K P. 2006. Pheophorbide a, a major antitumor component purified from Scutellaria barbata, induces apoptosis in human hepatocellular carcinoma cells. Planta Medica, 72(1): 28–33, https://doi.org/10.1055/s-2005-873149.

    Article  Google Scholar 

  • Claparède E, Lachmann J. 1859. Études sur les Infusoires et les Rhizopodes. Mèmoires de l’Institut National Genevois, 6: 261–482.

    Google Scholar 

  • Curtis B A, Tanifuji G, Burki F, Gruber A, Irimia M, Maruyama S, Arias M C, Ball S G, Gile G H, Hirakawa Y, Hopkins J F, Kuo A, Rensing S A, Schmutz J, Symeonidi A, Elias M, Eveleigh R J M, Herman E K, Klute M J, Nakayama T, Oborník M, Reyes-Prieto A, Armbrust E V, Aves S J, Beiko R G, Coutinho P, Dacks J B, Durnford D G, Fast N M, Green B R, Grisdale C J, Hempel F, Henrissat B, Höppner M P, Ishida K I, Kim E, Kořený L, Kroth P G, Liu Y, Malik S B, Maier U G, Mcrose D, Mock T, Neilson J A D, Onodera N T, Poole A M, Pritham E J, Richards T A, Rocap G, Roy S W, Sarai C, Schaack S, Shirato S, Slamovits C H, Spencer D F, Suzuki S, Worden A Z, Zauner S, Barry K, Bell C, Bharti A K, Crow J A, Grimwood J, Kramer R, Lindquist E, Lucas S, Salamov A, Mcfadden G I, Lane C E, Keeling P J, Gray M W, Grigoriev I V, Archibald J M. 2012. Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature, 492(7427): 59–65, https://doi.org/10.1038/nature11681.

    Article  Google Scholar 

  • Darriba D, Taboada G L, Doallo R, Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9(8): 772–772, https://doi.org/10.1038/nmeth.2109.

    Article  Google Scholar 

  • Daugbjerg N, Hansen G, Larsen J, Moestrup Ø. 2000. Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates. Phycologia, 39(4): 302–317, https://doi.org/10.2216/i0031-8884-39-4-302.1.

    Article  Google Scholar 

  • Dodge J D. 1982. Marine dinoflagellates of the British Isles. Her Majesty’s Stationary Office, London.

    Google Scholar 

  • Dolapsakis N P, Economou-Amilli A. 2009. A new marine species of Amphidinium (Dinophyceae) from Thermaikos Gulf, Greece. Acta Protozoologica, 48(2): 153–170.

    Google Scholar 

  • Dolmans D E J G J, Fukumura D, Jain R K. 2003. Photodynamic therapy for cancer. Nature Reviews Cancer, 3(5): 380–387, https://doi.org/10.1038/nrc1071.

    Article  Google Scholar 

  • Dougherty T J, Gomer C J, Henderson B W, Jori G, Kessel D, Korbelik M, Moan J, Peng Q. 1998. Photodynamic therapy. Journal of the National Cancer Institute, 90(12): 889–905, https://doi.org/10.1093/jnci/90.12.889.

    Article  Google Scholar 

  • Echigoya R, Rhodes L, Oshima Y, Satake M. 2005. The structures of five new antifungal and hemolytic amphidinol analogs from Amphidinium carterae collected in New Zealand. Harmful Algae, 4(2): 383–389, https://doi.org/10.1016/j.hal.2004.07.004.

    Article  Google Scholar 

  • Gárate-Lizárraga I, González-Armas R, Verdugo-Díaz G, Okolodkov Y B, Pérez-Cruz B, Díaz-Ortíz J A. 2019. Seasonality of the dinoflagellate Amphidinium cf. carterae (Dinophyceae: Amphidiniales) in Bahía de la Paz, Gulf of California. Marine Pollution Bulletin, 146: 532–541, https://doi.org/10.1016/j.marpolbul.2019.06.073.

    Article  Google Scholar 

  • Gottschling M, Plötner J. 2004. Secondary structure models of the nuclear internal transcribed spacer regions and 5.8S rRNA in Calciodinelloideae (Peridiniaceae) and other dinoflagellates. Nucleic Acids Research, 32(1): 307–315, https://doi.org/10.1093/nar/gkh168.

    Article  Google Scholar 

  • Gould S B. 2012. Evolutionary genomics: Algae’s complex origins. Nature, 492(7427): 46–48, https://doi.org/10.1038/nature11759.

    Article  Google Scholar 

  • Guillard R R L, Hargraves P E. 1993. Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia, 32(3): 234–236, https://doi.org/10.2216/i0031-8884-32-3-234.1.

    Article  Google Scholar 

  • Guillard R R L, Ryther J H. 1962. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Canadian Journal of Microbiology, 8(2): 229–239, https://doi.org/10.1139/m62-029.

    Article  Google Scholar 

  • Guiry M D, Guiry G M. 2021. AlgaeBase. World-Wide Electronic Publication. National University of Ireland, Galway. http://www.algaebase.org.

    Google Scholar 

  • Hackett J D, Anderson D M, Erdner D L, Bhattacharya D. 2004. Dinoflagellates: a remarkable evolutionary experiment. American Journal of Botany, 91(10): 1523–1534, https://doi.org/10.3732/ajb.91.10.1523.

    Article  Google Scholar 

  • Hall T A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41: 95–98.

    Google Scholar 

  • Hoppenrath M, Murray S A, Chomérat N, Horiguchi T. 2014. Marine Benthic Dinoflagellates—unveiling their worldwide biodiversity. Kleine Senckenberg-Reihe, Stuttgart, Germany. 276p.

    Google Scholar 

  • Huang X C, Zhao D, Guo Y W, Wu H M, Lin L P, Wang Z H, Ding J, Lin Y S. 2004a. Lingshuiol, a novel polyhydroxyl compound with strongly cytotoxic activity from the marine dinoflagellate Amphidinium sp. Bioorganic & Medicinal Chemistry Letters, 14(12): 3117–3120, https://doi.org/10.1016/j.bmcl.2004.04.029.

    Google Scholar 

  • Huang X C, Zhao D, Guo Y W, Wu H M, Trivellone E, Cimino G. 2004b. Lingshuiols A and B, two new polyhydroxy compounds from the Chinese marine dinoflagellate Amphidinium sp. Tetrahedron Letters, 45(28): 5501–5504, https://doi.org/10.1016/j.tetlet.2004.05.067.

    Article  Google Scholar 

  • Hulburt E M. 1957. The taxonomy of unarmored Dinophyceae of shallow embayments on Cape Cod, Massachusetts. The Biological Bulletin, 112(2): 196–219, https://doi.org/10.2307/1539198.

    Article  Google Scholar 

  • Jørgensen M F, Murray S, Daugbjerg N. 2004. Amphidinium revisited. I. redefinition of Amphidinium (Dinophyceae) based on cladistic and molecular phylogenetic analyses. Journal of Phycology, 40(2): 351–365, https://doi.org/10.1111/j.1529-8817.2004.03131.x.

    Article  Google Scholar 

  • Karafas S, Teng S T, Leaw C P, Alves-de-Souza C. 2017. An evaluation of the genus Amphidinium (Dinophyceae) combining evidence from morphology, phylogenetics, and toxin production, with the introduction of six novel species. Harmful Algae, 68: 128–151, https://doi.org/10.1016/j.hal.2017.08.001.

    Article  Google Scholar 

  • Katoh K, Standley D M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30(4): 772–780, https://doi.org/10.1093/molbev/mst010.

    Article  Google Scholar 

  • Klebs G. 1884. Ein kleiner Beitrag zur kenntnis der Peridineen. Botanische Zeitschrift, 42: 737–752.

    Google Scholar 

  • Kobayashi J, Shigemori H, Ishibashi M, Yamasu T, Hirota H, Sasaki T. 1991. Amphidinolides G and H: new potent cytotoxic macrolides from the cultured symbiotic dinoflagellate Amphidinium sp. Journal of Organic Chemistry, 56(17): 5221–5224, https://doi.org/10.1021/jo00017a044.

    Article  Google Scholar 

  • Kofoid C A, Swezy O. 1921. The free-living unarmored Dinoflagellata. University of California Press, Berkeley, California. 562p.

    Book  Google Scholar 

  • Kong D K, Lee M J, Lin S J, Kim E S. 2013. Biosynthesis and pathway engineering of antifungal polyene macrolides in actinomycetes. Journal of Industrial Microbiology and Biotechnology, 40(6): 529–543, https://doi.org/10.1007/s10295-013-1258-6.

    Article  Google Scholar 

  • Kumagai K, Tsuda M, Fukushi E, Kawabata J, Masuda A, Tsuda M. 2017. Iriomoteolides-9a and 11a: two new odd-numbered macrolides from the marine dinoflagellate Amphidinium species. Journal of Natural Medicines, 71(3): 506–512, https://doi.org/10.1007/s11418-017-1080-y.

    Article  Google Scholar 

  • Lee J J, Shpigel M, Freeman S, Zmora O, Mcleod S, Bowen S, Pearson M, Szostek A. 2003. Physiological ecology and possible control strategy of a toxic marine dinoflagellate, Amphidinium sp., from the benthos of a mariculture pond. Aquaculture, 217(1–4): 351–371, https://doi.org/10.1016/S0044-8486(02)00373-3.

    Article  Google Scholar 

  • Lee K H, Jeong H J, Park K, Kang N S, Yoo Y D, Lee M J, Lee J W, Lee S, Kim T, Kim H S, Noh J H. 2013. Morphology and molecular characterization of the epiphytic dinoflagellate Amphidinium massartii, isolated from the temperate waters off Jeju Island, Korea. Algae, 28(3): 213–231, https://doi.org/10.4490/algae.2013.28.3.213.

    Article  Google Scholar 

  • Maranda L, Shimizu Y. 1996. Amphidinium operculatum var. nov. gibbosum (Dinophyceae), a free-swimming marine species producing cytotoxic metabolites. Journal of Phycology, 32(5): 873–879, https://doi.org/10.1111/j.0022-3646.1996.00873.x.

    Article  Google Scholar 

  • Matile P, Schellenberg M. 1996. The cleavage of phaeophorbide a is located in the envelope of barley gerontoplasts. Plant Physiology and Biochemistry, 34(1): 55–59.

    Google Scholar 

  • Moestrup Ø, Daugbjerg N. 2007. On dinoflagellate phylogeny and classification. In: Brodie J, Lewis J eds. Unravelling the Algae: the Past, Present, and Future of Algal Systematics. CRC Press, Boca Raton. p.215–230.

    Chapter  Google Scholar 

  • Morden C W, Sherwood A R. 2002. Continued evolutionary surprises among dinoflagellates. Proceedings of the National Academy of Sciences of the United States of America, 99(18): 11558–11560, https://doi.org/10.1073/pnas.192456999.

    Article  Google Scholar 

  • Murray S A, Garby T, Hoppenrath M, Neilan B A. 2012. Genetic diversity, morphological uniformity and polyketide production in dinoflagellates (Amphidinium, Dinoflagellata). PLoS One, 7(6): e38253, https://doi.org/10.1371/journal.pone.0038253.

    Article  Google Scholar 

  • Murray S A, Kohli G S, Farrell H, Spiers Z B, Place A R, Dorantes-Aranda J J, Ruszczyk J. 2015. A fish kill associated with a bloom of Amphidinium carterae in a coastal lagoon in Sydney, Australia. Harmful Algae, 49: 19–28, https://doi.org/10.1016/j.hal.2015.08.003.

    Article  Google Scholar 

  • Murray S, Flø Jørgensen M, Daugbjerg N, Rhodes L. 2004. Amphidinium revisited. II. resolving species boundaries in the Amphidinium operculatum species complex (Dinophyceae), including the descriptions of Amphidinium trulla sp. nov. and Amphidinium gibbosum. comb. nov. Journal of Phycology, 40(2): 366–382.

    Article  Google Scholar 

  • Murray S, Patterson D. 2002. The benthic dinoflagellate genus Amphidinium in south-eastern Australian waters, including three new species. European Journal of Phycology, 37(2): 279–298.

    Article  Google Scholar 

  • Nuzzo G, Cutignano A, Sardo A, Fontana A. 2014. Antifungal amphidinol 18 and its 7-sulfate derivative from the marine dinoflagellate Amphidinium carterae. Journal of Natural Products, 77(6): 1524–1527, https://doi.org/10.1021/np500275x.

    Article  Google Scholar 

  • Rodoni S, Mühlecker W, Anderl M, Krautler B, Moser D, Thomas H, Matile P, Hortensteiner S. 1997. Chlorophyll breakdown in senescent chloroplasts (cleavage of pheophorbide a in Two enzymic steps). Plant Physiology, 115(2): 669–676, https://doi.org/10.1104/pp.115.2.669.

    Article  Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, Ayres D L, Darling A, Höhna S, Larget B, Liu L, Suchard M A, Huelsenbeck J P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3): 539–542, https://doi.org/10.1093/sysbio/sys029.

    Article  Google Scholar 

  • Saldarriaga J F, Taylor F J R, Cavalier-Smith T, Menden-Deuer S, Keeling P J. 2004. Molecular data and the evolutionary history of dinoflagellates. European Journal of Protistology, 40(1): 85–111, https://doi.org/10.1016/j.ejop.2003.11.003.

    Article  Google Scholar 

  • Saldarriaga J F, Taylor F J R, Keeling P J, Cavalier-Smith T. 2001. Dinoflagellate nuclear SSU rRNA phylogeny suggests multiple plastid losses and replacements. Journal of Molecular Evolution, 53(3): 204–213, https://doi.org/10.1007/s002390010210.

    Article  Google Scholar 

  • Schnepf E, ElbräChter M. 1999. Dinophyte chloroplasts and phylogeny—a review. Grana, 38(2–3): 81–97, https://doi.org/10.1080/00173139908559217.

    Article  Google Scholar 

  • Sekida S, Okuda K, Katsumata K, Horiguchi T. 2003. A novel type of body scale found in two strains of Amphidinium species (Dinopbyceae). Phycologia, 42(6): 661–666, https://doi.org/10.2216/i0031-8884-42-6-661.1.

    Article  Google Scholar 

  • Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22(21): 2688–2690, https://doi.org/10.1093/bioinformatics/btl446.

    Article  Google Scholar 

  • Steidinger K A, Tangen K. 1997. Dinoflagellates. In: Tomas C R ed. Identifying Marine Phytoplankton. Academic Press, London. p.387–589.

    Chapter  Google Scholar 

  • Stein F. 1883. Der Organismus der Infusionsthiere nach eigenen Forschungen in systematischer Reihenfolge bearbeitet. III. Die Naturgeschichte der arthrodelen Flagellaten. Wilhelm Engelmann, Leipzig, Germany. 30p.

    Google Scholar 

  • Swofford D. 2002. PAUP*: Phylogenetic analysis using parsimony (* and other methods), version 4.0 b10. Sinauer Associates, Sunderland.

    Google Scholar 

  • Takahashi Y, Kubota T, Kobayashi J I. 2007. Amphidinolactone B, a new 26-membered macrolide from dinoflagellate Amphidinium sp. The Journal ofAntibiotics, 60(6): 376–379, https://doi.org/10.1038/ja.2007.51.

    Article  Google Scholar 

  • Takamiya K I, Tsuchiya T, Ohta H. 2000. Degradation pathway(s) of chlorophyll: what has gene cloning revealed? Trends in Plant Science, 5(10): 426–431, https://doi.org/10.1016/S1360-1385(00)01735-0.

    Article  Google Scholar 

  • Tamura M, Takano Y, Horiguchi T. 2009. Discovery of a novel type of body scale in the marine dinoflagellate, Amphidinium cupulatisquama sp. nov. (Dinophyceae). Phycological Research, 57(4): 304–312, https://doi.org/10.1111/j.1440-1835.2009.00550.x.

    Article  Google Scholar 

  • Taylor D L. 1971. On the symbiosis between Amphidinium klebsii [Dinophyceae] and Amphiscolops langerhansi [Turbellaria: Acoela]. Journal of the Marine Biological Association of The United Kingdom, 51(2): 301–313, https://doi.org/10.1017/S0025315400031799.

    Article  Google Scholar 

  • Thompson R H. 1951. A new genus and new records of freshwater Pyrrophyta in the Desmokontae and Dinophyceae. Lloydia, 13: 277–299.

    Google Scholar 

  • White T J, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M A, Gelfand D H, Sninsky J J, White T J eds. PCR Protocols. Academic Press, San Diego. p.315–322, https://doi.org/10.1016/B978-0-12-372180-8.50042-1.

    Google Scholar 

  • Wu J, Long L J, Song Y, Zhang S, Li Q X, Huang J S, Xiao Z H. 2005. A New Unsaturated Glycoglycerolipid from a cultured marine dinoflagellate Amphidinium carterae. Chemical and Pharmaceutical Bulletin, 53(3): 330–332, https://doi.org/10.1248/cpb.53.330.

    Article  Google Scholar 

  • Yamada N, Tanaka A, Horiguchi T. 2015. Pigment compositions are linked to the habitat types in dinoflagellates. Journal of Plant Research, 128(6): 923–932, https://doi.org/10.1007/s10265-015-0745-4.

    Article  Google Scholar 

  • Yoon H S, Hackett J D, Bhattacharya D. 2002. A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis. Proceedings of the National Academy of Sciences of the United States of America, 99(18): 11724–11729, https://doi.org/10.1073/pnas.172234799.

    Article  Google Scholar 

  • Zapata M, Fraga S, Rodríguez F, Garrido J L. 2012. Pigment-based chloroplast types in dinoflagellates. Marine Ecology Progress Series, 465: 33–52, https://doi.org/10.3354/meps09879.

    Article  Google Scholar 

  • Zapata M, Rodriguez F, Garrido J L. 2000. Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Marine Ecology Progress Series, 195: 29–45, https://doi.org/10.3354/meps195029.

    Article  Google Scholar 

  • Zhang H, Bhattacharya D, Lin S J. 2007. A three-gene dinoflagellate phylogeny suggests monophyly of Prorocentrales and a basal position for Amphidinium and Heterocapsa. Journal ofMolecularEvolution, 65(4): 463–474, https://doi.org/10.1007/s00239-007-9038-4.

    Google Scholar 

  • Zhang H. 2015. Diversity, Phylogeny and Distribution of Benthic Dinoflagellates in Hainan Island, China. Jinan University, Guangzhou, China. (in Chinese)

    Google Scholar 

  • Zhang Z D, Green B R, Cavalier-Smith T. 1999. Single gene circles in dinoflagellate chloroplast genomes. Nature, 400(6740): 155–159, https://doi.org/10.1038/22099.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Songhui Lü or Haifeng Gu.

Additional information

Supported by the Scientific Research Foundation of Third Institute of Oceanography, MNR (No. 2017023), the National Natural Science Foundation of China (Nos. 41806154, 41876173, 42076144), the Special Foundation for National Science and Technology Basic Research Program of China (Nos. 2018FY100200, 2018FY100100), and the Project of Southern Marine Science and Engineering Guangdong Laboratory (No. 311021004) ** Corresponding authors: lusonghui1963@163.com; guhaifeng@tio.org.cn

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Z., Zhang, H., Li, Q. et al. Characterization of Amphidinium (Amphidiniales, Dinophyceae) species from the China Sea based on morphological, molecular, and pigment data. J. Ocean. Limnol. 40, 1191–1219 (2022). https://doi.org/10.1007/s00343-021-1049-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-021-1049-2

Keywords

Navigation