Skip to main content
Log in

Establishment and tests of EnOI assimilation module for WAVEWATCH III

  • Dynamics
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

In this paper, we propose a parallel data assimilation module based on ensemble optimal interpolation (EnOI). We embedded the method into the full-spectral third-generation wind-wave model, WAVEWATCH III Version 3.14, producing a wave data assimilation system. We present our preliminary experiments assimilating altimeter significant wave heights (SWH) using the EnOI-based wave assimilation system. Waters north of 15°S in the Indian Ocean and South China Sea were chosen as the target computational domain, which was two-way nested into the global implementation of the WAVEWATCH III. The wave model was forced by six-hourly ocean surface wind velocities from the cross-calibrated multi-platform wind vector dataset. The assimilation used along-track SWH data from the Jason-2 altimeter. We evaluated the effect of the assimilation on the analyses and hindcasts, and found that our technique was effective. Although there was a considerable mean bias in the control SWHs, a month-long consecutive assimilation reduced the bias by approximately 84% and the root mean-square error (RMSE) by approximately 65%. Improvements in the SWH RMSE for both the analysis and hindcast periods were more significant in July than January, because of the monsoon climate. The improvement in model skill persisted for up to 48 h in July. Furthermore, the SWH data assimilation had the greatest impact in areas and seasons where and when the sea-states were dominated by swells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Babovic V, Sannasiraj S A, Chan E s. (2005. Error correction of a predictive ocean wave model using local model approximation. J. Mar. Sys., 53 (1-4): 1–17.

    Article  Google Scholar 

  • Bauer E, Hasselmann S, Hasselmann K, Graber H C. 1992. Validation and assimilation of Seasat altimeter wave heights using the WAM wave model. J. Geophys. Res., 97 (C8): 12 671–12 682.

    Article  Google Scholar 

  • Bender L C, Glowacki T J. (1996. The assimilation of altimeter data into the Australian wave model. Aust. Meteorol. Mag., 45 (1): 41–48.

    Google Scholar 

  • Burgers G, van Leeuwen P J, Evensen G. 1998. Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126 (6): 1719–1724.

    Article  Google Scholar 

  • Chassignet E P, Hurlburt H E, Smedstad O M, Halliwell G R, Hogan P J, Wallcraft A J, Baraille R, Bleck R. 2007. The HYCOM (HYbrid coordinate ocean model) data assimilative system. J. Mar. Syst., 65 (1-4): 60–83.

    Article  Google Scholar 

  • Cooper M, Haines K. 1996. Altimetric assimilation with water property conservation. J. Geophys. Res. 101 (C1): 1059–1077.

    Article  Google Scholar 

  • Counillon F, Bertino L. 2009. Ensemble optimal interpolation: multivariate properties in the Gulf of Mexico. Tellus A, 61 (2): 296–308.

    Article  Google Scholar 

  • Cummings J A. 2005. Operational multivariate ocean data assimilation. Quart. J. Roy. Meteor. Soc., 131 (613): 3583–3604.

    Article  Google Scholar 

  • Dumont J P, Rosmorduc V, Picot N, Bronner E, Desai S, Bonekamp H, Figa J, Lillibridge J, Scharroo R. 2009. OSTM/Jason-2products handbook. CNES: SALP-MU-M-OP-15815-CN, EUMETSAT: EUM/OPS-JAS/MAN/08/0041, JPL: OSTM-29-1237, NOAA/NESDIS: Polar Series/OSTM J400.

    Google Scholar 

  • Emmanouil G, Galanis G, Kallos G, Breivik L A, Heiberg H, Reistad M. 2007. Assimilation of radar altimeter data in numerical wave models: an impact study in two different wave climate regions. Ann. Geophys., 25 (3): 581–595.

    Article  Google Scholar 

  • Emmanouil G, Galanis G, Kallos G. 2010. A new methodology for using buoy measurements in sea wave data assimilation. Ocean Dynam., 60 (5): 1205–1218.

    Article  Google Scholar 

  • Emmanouil G, Galanis G, Kallos G. 2012. Combination of statistical Kalman filters and data assimilation for improving ocean waves analysis and forecasting. Ocean Modelling, 59-60: 11–23, http://dx.doi.org/10.1016/J. ocemod.2012.09.004.

    Article  Google Scholar 

  • Esteva D C. 1988. Evaluation of preliminary experiments assimilating Seasat significant wave heights into a spectral wave model. J. Geophys. Res., 93 (C11): 14 099–14 105.

    Article  Google Scholar 

  • Evensen G, van Leeuwen P J. (2000. An ensemble Kalman smoother for nonlinear dynamics. Mon. Wea. Rev., 8 (6): 1852–1862.

    Article  Google Scholar 

  • Evensen G. 1994. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 (C5): 10 143–10 162.

    Article  Google Scholar 

  • Evensen G. 2003. The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dynam., 53 (4): 343–367, http://dx.doi.org/10.1007/s10236-003-0036-9.

    Article  Google Scholar 

  • Evensen G. 2004. Sampling strategies and square root analysis schemes for the EnKF. Ocean Dynam., 54 (6): 539–560, http://dx.doi.org/10.1007/s10236-004-0099-2.

    Article  Google Scholar 

  • Fox D N, Teague W J, Barron C N, Carnes M R, Lee C M. 2002. The modular ocean data assimilation system (MODAS). J. Atmos. Ocean ic Technol., 19 (2): 240–252.

    Article  Google Scholar 

  • Fu W W, Zhu J, Yan C X. 2009. A comparison between 3DVAR and EnOI techniques for satellite altimetry data assimilation. Ocean Modelling, 26 (3-4): 206–216, http://dx.doi.org/10.1016/j.ocemod.2008.10.002.

    Article  Google Scholar 

  • Galanis G, Emmanouil G, Chu P C, Kallos G. 2009. A new methodology for the extension of the impact of data assimilation on ocean wave prediction. Ocean Dynam., 59 (3): 523–535.

    Article  Google Scholar 

  • Greenslade D J M, Schulz E W, Kepert J D, Warren G R. 2005. The impact of the assimilation of scatterometer winds on surface wind and wave forecasts. Journal of Atmospheric & Ocean Science, 10 (3): 261–287.

    Article  Google Scholar 

  • Greenslade D J M, Young I R. 2004. Background errors in a global wave model determined from altimeter data. J. Geophys. Res., 109 (C9): C09007, http://dx.doi.org/10.1029/2004JC002324.

    Google Scholar 

  • Greenslade D J M, Young I R. 2005. The impact of inhomogenous background errors on a global wave data assimilation system. Journal of Atmospheric & Ocean Science, 10 (2): 61–93.

    Article  Google Scholar 

  • Greenslade D J M. 2001. The assimilation of ERS-2 significant wave height data in the Australian region. J. Mar. Sys., 28 (1-2): 141–160.

    Article  Google Scholar 

  • Guinehut S, Le Traon P Y, Larnicol G, Philipps S. (2004. Combining Argo and remote-sensing data to estimate the ocean three-dimensional temperature fields-a first approach based on simulated observations. J. Mar. Syst., 46 (1-4): 85–98.

    Article  Google Scholar 

  • Guo Y Y, Hou Y J, Zhang C M, Yang J. (2012. A background error covariance model of significant wave height employing Monte Carlo simulation. Chin. J. Ocean. Limnol., 30 (5): 814–821, http://dx.doi.org/10.1007/ s00343-012-1278-5.

    Article  Google Scholar 

  • Hasselmann S, Lionello P, Hasselmann K. 1997. An optimal interpolation scheme for the assimilation of spectral wave data. J. Geophys. Res., 102 (C7): 15 823–15 836.

    Article  Google Scholar 

  • Le Dimet F X, Talagrand O. 1986. Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus A, 38 (2): 97–110.

    Article  Google Scholar 

  • Lionello P, Günther H, Hansen B. 1995. A sequential assimilation scheme applied to global wave analysis and prediction. J. Mar. Sys., 6 (1-2): 87–107.

    Article  Google Scholar 

  • Lionello P, Günther H, Janssen P A E M. 1992. Assimilation of altimeter data in a global third-generation wave model. J. Geophys. Res., 97 (C9): 14 453–14 474.

    Article  Google Scholar 

  • Martin M J, Hines A, Bell M J. (2007. Data assimilation in the FOAM operational short-range ocean forecasting system: a description of the scheme and its impact. Quart. J. Roy. Meteor. Soc., 133 (625): 981–995.

    Article  Google Scholar 

  • Oke P R, Allen J S, Miller R N, Egbert G D, Kosro P M. 2002. Assimilation of surface velocity data into a primitive equation coastal ocean model. J. Geophys. Res., 107 (C9), http://dx.doi.org/10.1029/2000JC000511.

  • Oke P R, Brassington G B, Griffin D A, Schiller A. 2008. The Bluelink ocean data assimilation system (BODAS). Ocean Modelling, 21 (1-2): 46–70.

    Article  Google Scholar 

  • Oke P R, Schiller A, Griffin D A, Brassington G B. 2005. Ensemble data assimilation for an eddy-resolving ocean model of the Australian region. Quart. J. Roy. Meteor. Soc., 131 (613): 3301–3311.

    Article  Google Scholar 

  • Sannasiraj S A, Babovic V, Chan E S. (2005. Local model approximation in the real time wave forecasting. Coastal Engineering, 52 (3): 221–236.

    Article  Google Scholar 

  • Sannasiraj S A, Babovic V, Chan E S. (2006. Wave data assimilation using ensemble error covariances for operational wave forecast. Ocean Modelling, 14 (1-2): 102–121.

    Article  Google Scholar 

  • Segschneider J, Anderson D L T, Vialard J, Balmaseda M, Stockdale T N, Troccoli A, Haines K. 2000. Initialization of seasonal forecasts assimilating sea level and temperature observations. J. Climate, 14 (22): 4292–4307.

    Article  Google Scholar 

  • Talagrand O, Courtier P. 1987. Variational assimilation of meteorological observations with the adjoint vorticity equation. I: theory. Quart. J. Roy. Meteor. Soc., 113 (478): 1311–1328.

    Article  Google Scholar 

  • Thomas J P. 1988. Retrieval of energy spectra from measured data for assimilation into a wave model. Quart. J. Roy. Meteor. Soc., 114 (481): 781–800.

    Article  Google Scholar 

  • Tolman H L. 2009. User manual and system documentation of WAVEWATCH III TM version 3.14.

  • Troccoli A, Haines K. 1999. Use of the temperature-salinity relation in a data assimilation context. J. Atmos. Ocean ic Technol., 16 (12): 2011–2025.

    Article  Google Scholar 

  • Voorrips A C, Makin V K, Hasselmann s. (1997. Assimilation of wave spectra from pitch-and-roll buoys in a North Sea wave model. J. Geophys. Res., 102 (C3): 5829–5849.

    Article  Google Scholar 

  • Walker D T. 2006. Assimilation of SAR imagery in a nearshore spectral wave model. DTIC Document.

    Google Scholar 

  • Wang Y, Yu Z W. 2009. Validation of impact of assimilation of altimeter satellite significant wave height on wave forecast in the northwest Pacific. Acta Oceanologica Sinica, 31 (6): 1–8. (in Chinese with English abstract)

    Article  Google Scholar 

  • Xie J P, Counillon F, Zhu J, Bertino L. 2011. An eddy resolving tidal-driven model of the South China Sea assimilating along-track SLA data using the EnOI. Ocean Sci., 7 (5): 609–627, http://dx.doi.org/10.5194/os-7-609-2011.

    Article  Google Scholar 

  • Yan C X, Zhu J. (2011. Choice of ensemble members for ensemble optimal interpolation. Climatic and Environmental Research, 16 (4): 452–458. (in Chinese with English abstract)

    Google Scholar 

  • Zamani A, Azimian A, Heemink A, Solomatine D. 2010. Nonlinear wave data assimilation with an ANN-type windwave model and Ensemble Kalman Filter (EnKF). Applied Mathematical Modelling, 34(8): 1984–1999.

    Article  Google Scholar 

  • Zhang Z X, Li C W, Li Y S, Qi Y Q. 2006. Incorporation of artificial neural networks and data assimilation techniques into a third-generation wind-wave model for wave forecasting. J. Hydroinform, 7: 65–76.

    Google Scholar 

  • Zhang Z X, Qi Y Q, Shi P, Li C W, Li Y s. (2003. Application of an optimal interpolation wave assimilation method in South China Sea. Journal of Tropical Oceanography, 22 (4): 34–41, http://dx.doi.org/10.3969/j.issn.1009-5470.2003.04.005. (in Chinese with English abstract)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Qi  (齐鹏).

Additional information

Supported by the National Special Research Fund for Non-Profit Marine Sector (Nos. 201005033, 201105002), the National High Technology Research and Development Program of China (863 Program) (No. 2012AA091801), the National Natural Science Foundation of China (No. U1133001), and the NSFC-Shandong Joint Fund for Marine Science Research Centers (No. U1406401)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, P., Cao, L. Establishment and tests of EnOI assimilation module for WAVEWATCH III. Chin. J. Ocean. Limnol. 33, 1295–1308 (2015). https://doi.org/10.1007/s00343-015-4282-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-015-4282-8

Keyword

Navigation