Skip to main content

Advertisement

Log in

Wind retrieval for genetic algorithm-based coherent Doppler wind lidar employing airborne platform

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The method of the maximum function of accumulated spectra based on the genetic algorithm is applied for the first time to three-dimensional (3D) wind field retrieval by Doppler wind lidar on an airborne platform. The algorithm can obtain the 3D wind field directly from the origin spectra of different directions regardless of the radial wind velocity inversion accuracy. To validate the reliability of this algorithm for application on an airborne platform, a 1.54-μm all-fiber airborne pulsed coherent Doppler lidar was installed on an aircraft to conduct field experiments. The measured wind fields were compared with those obtained through the sounding balloon and the ground-based lidar. For the sounding balloon, the average errors of wind speed and the wind direction are 0.539 m/s and 5.12°; while for the ground-based lidar, the average errors are 0.504 m/s and 4.18°, respectively. In addition, the two inversion results are in good consistency by comparison with the least square method. The genetic algorithm shows higher accuracy even though the detectability is low. The proposed algorithm, as an efficient and accurate calculation model, would be a good tool in the airborne platform for wind retrieval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

  1. V.A. Banakh, C. Werner, Computer simulation of coherent Doppler lidar measurement of wind velocity and retrieval of turbulent wind statistics. Opt. Eng. 44(7), 071205 (2005)

    Article  ADS  Google Scholar 

  2. D. Chen, G. Sun, L. Zhu, H. Zhang, K. Zhang, N. Weng, X. Li, S. Zhu, Q. Yu, J. Su, L. Chen, J. Chu, Estimation of boundary-layer turbulence parameters in Hefei based on wind profile radar. In: Eighth Symposium on Novel Photoelectronic Detection Technology and Applications (2022)

  3. I.N. Smalikho, V. Banakh, A. Sherstobitov, A. Falits, O.A. Romanovskii, G.G. Matvienko, Estimation of wind turbulence parameters from spectra of the vertical wind velocity measured by a pulsed coherent Doppler lidar. In: 27th International symposium on atmospheric and ocean optics, atmospheric physics (2021)

  4. Z. Pu, L. Zhang, G.D. Emmitt, Impact of airborne Doppler wind lidar profiles on numerical simulations of a tropical cyclone. Geophys. Res. Lett. (2010). https://doi.org/10.1029/2009GL041765

    Article  Google Scholar 

  5. Y.S. Tsai, J.J. Miau, C. Yu, W. Chang, Lidar observations of the typhoon boundary layer within the outer rainbands. Bound. Layer Meteorol. 171(2), 237–255 (2019)

    Article  ADS  Google Scholar 

  6. Z. Yang, Y. Zhang, J. Zhou, Y. Chen, G. Zhang, D. Zhou, C. Chen, Y. Hu, X. Luo, Z. Feng, Real-time wind field measurements using all-fiber mobile Doppler wind lidar. Opt. Eng. 59(03), 034107 (2020)

    Article  ADS  Google Scholar 

  7. P. Benoit, S.L. Mehaute, J.L. Gouet, G. Canat, All-fiber laser source at 1645 nm for lidar measurement of methane concentration and wind velocity. Opt. Lett. 46(1), 126–129 (2021)

    Article  ADS  Google Scholar 

  8. S. Wu, X. Zhai, B. Liu, Aircraft wake vortex and turbulence measurement under near-ground effect using coherent Doppler lidar. Opt. Express 27(2), 1142–1163 (2019)

    Article  ADS  Google Scholar 

  9. J. Chu, Y. Han, D. Sun, F. Han, H. Liu, Statistical interpolation technique based on coherent Doppler lidar for real-time horizontal wind shear observations and forewarning. Opt. Eng. 60(04), 046102 (2021)

    Article  ADS  Google Scholar 

  10. F. Ma, Y. Chen, Z. Yang, Latest development of laser Doppler wind measurement technology. Laser Optoelectron. Prog. 56(18), 180003 (2019)

    Article  Google Scholar 

  11. G.J. Koch, J.Y. Beyon, B.W. Barnes, M. Petros, High-energy 2 μm Doppler lidar for wind measurements. Opt. Eng. 46(11), 116201 (2007)

    Article  ADS  Google Scholar 

  12. P.H. Flamant, Wind infrared Doppler lidar instrument. Opt. Eng. 40(1), 1335530 (2001)

    Article  Google Scholar 

  13. L. Bu, Z. Qiu, H. Gao, X. Zhu, J. Liu, All-fiber pulse coherent Doppler LIDAR and its validations. Opt. Eng. 54(12), 123103 (2015)

    Article  ADS  Google Scholar 

  14. H. Wang, R.J. Barthelmie, A. Clifton, S.C. Pryor, Wind measurements from arc scans with Doppler wind lidar. J. Atmos. Ocean. Technol. 32(11), 2024–2040 (2015)

    Article  ADS  Google Scholar 

  15. X. Rui, P. Guo, H. Chen, S. Chen, Y. Zhang, Adaptive iteratively reweighted sine wave fitting method for rapid wind vector estimation of pulsed coherent Doppler lidar. Opt. Express 27(15), 21319–21334 (2019)

    Article  ADS  Google Scholar 

  16. V.A. Banakh, I.N. Smalikho, Lidar observations of atmospheric internal waves in the boundary layer of the atmosphere on the coast of Lake Baikal. Atmos. Meas. Tech. 9(10), 5239–5248 (2016)

    Article  Google Scholar 

  17. B. Augere, M. Valla, A. Durecu, A.D. Bouteyre, D. Goular, F. Gustave, C. Planchat, D. Fleury, T. Huet, C. Besson, Three-dimensional wind measurements with the fibered airborne coherent Doppler wind Lidar LIVE. Atmosphere 10(9), 0549 (2019)

    Article  ADS  Google Scholar 

  18. B. Witschas, C. Lemmerz, A. Geiβ, O. Lux, U. Marksteiner, S. Rahm, O. Reitebuch, F. Weiler, First validation of Aeolus wind observations by airborne Doppler wind lidar measurements. Atmos. Meas. Tech. 13(5), 2381–2396 (2020)

    Article  Google Scholar 

  19. L. Yuan, H. Liu, J. Liu, X. Zhu, G. Hu, W. Chen, Wind vector estimation of coherent Doppler wind lidar based on genetic algorithm. Chin. J. Lasers 47(8), 10004 (2020)

    Google Scholar 

  20. B. Gross, J. Liu, X. Zhu, W. Diao, X. Zhang, Y. Liu, D. Bi, L. Jiang, W. Shi, X. Zhu, W. Chen, F. Moshary, M. Arend, All-fiber airborne coherent Doppler lidar to measure wind profiles. EPJ Web Conf. 119, 10002 (2016)

    Article  Google Scholar 

  21. H. Liu, L. Yuan, C. Fan, F. Liu, X. Zhang, X. Zhu, J. Liu, X. Zhu, W. Chen, Performance validation on an all-fiber 154-μm pulsed coherent Doppler lidar for wind-profile measurement Opt. Eng. 59(01), 014109 (2020)

    Google Scholar 

  22. C. Yan, M. Li, X. Zhou, Application of improved genetic algorithm in function optimization. Appl. Res. Comput. 36(10), 2982–2985 (2019)

    Google Scholar 

  23. Y. Ito, M. Imaki, H. Tanaka, M. Hagio, H. Inokuchi, S. Kameyama, Active alignment of receiving beam for coaxial optics in wind sensing coherent Doppler lidar using feedback control based on the processing of heterodyne-detected signal. Appl. Opt. 61(2), 352–361 (2022)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Pre-Research Project of Civilian Space under Grant No. D040103. The authors are grateful for the collocated wind lidar.

Author information

Authors and Affiliations

Authors

Contributions

Yuan Zhao wrote the main manuscript text and prepared all figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Xiaopeng Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Yuan, L., Fan, C. et al. Wind retrieval for genetic algorithm-based coherent Doppler wind lidar employing airborne platform. Appl. Phys. B 129, 36 (2023). https://doi.org/10.1007/s00340-023-07984-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-07984-2

Navigation