Skip to main content
Log in

Heating rate measurement and characterization of a prototype surface-electrode trap for optical frequency metrology

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present the characterization of a prototype surface-electrode trap as a first step towards the realization of a compact, single-ion optical clock based on Yb\(^+\). The use of a SE trap will be a key factor to benefit from clean-room fabrication techniques and technological advances made in the field of quantum information processing. We successfully demonstrated trapping at a 500 \({\upmu }\)m electrodes distance and characterized our trap in terms of lifetime and heating rate. This is to our knowledge the highest distance achieved for heating rates measurements in SE traps. This simple 5-wire design realized with simple materials yields a heating rate of \(8\times 10^3\) phonons/s. We provide an analysis of the performances of this prototype trap for optical frequency metrology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Alvatec, now AlfaVakuo.

  2. NKT Photonics.

References

  1. H.G. Dehmelt, Monoion oscillator as potential ultimate laser frequency standard. IEEE Trans. Instrum. Meas. 31(2), 83–87 (1982)

    Article  ADS  Google Scholar 

  2. J.I. Cirac, P. Zoller, Quantum computations with cold trapped ions. Phys. Rev. Lett. 74(20), 4091–4094 (1995)

    Article  ADS  Google Scholar 

  3. N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, E. Peik, Single-ion atomic clock with \(3\times 10^{-18}\) systematic uncertainty. Phys. Rev. Lett. 116(6), 063001 (2016)

    Article  ADS  Google Scholar 

  4. S.M. Brewer, A.M. Chen, J.S. Hankin, E.R. Clements, C.W. Chou, D.J. Wineland, D.B. Hume, D.R. Leibrandt, \(^{27}{{\rm Al}}^+\) quantum-logic clock with a systematic uncertainty below \(10^{-18}\). Phys. Rev. Lett. 123(3), 033201 (2019)

    Article  ADS  Google Scholar 

  5. R. Le Targat, L. Lorini, Y. Le Coq, M. Zawada, J. Guéna, M. Abgrall, M. Gurov, P. Rosenbusch, D.G. Rovera, B. Nagórny, R. Gartman, P.G. Westergaard, M.E. Tobar, M. Lours, G. Santarelli, A. Clairon, S. Bize, P. Laurent, P. Lemonde, J. Lodewyck, Experimental realization of an optical second with strontium lattice clocks. Nat. Commun. 4, 2109 (2013)

    Article  ADS  Google Scholar 

  6. C. Grebing, A. Al-Masoudi, S. Dörscher, S. Häfner, V. Gerginov, S. Weyers, B. Lipphardt, F. Riehle, U. Sterr, C. Lisdat, Realization of a timescale with an accurate optical lattice clock. Optica 3(6), 563–569 (2016)

    Article  ADS  Google Scholar 

  7. K. Beloy et al., and Boulder Atomic Clock Optical Network (BACON) Collaboration. Frequency ratio measurements at 18-digit accuracy using an optical clock network. Nature 591(7851), 564–569 (2021)

  8. K.K. Mehta, C. Zhang, M. Malinowski, T.-L. Nguyen, M. Stadler, J.P. Home, Integrated optical multi-ion quantum logic. Nature 586(7830), 533–537 (2020)

    Article  ADS  Google Scholar 

  9. Z.D. Romaszko, S. Hong, M. Siegele, R. Kahan Puddy, F. Raphaël Lebrun-Gallagher, S. Weidt, W.K. Hensinger, Engineering of microfabricated ion traps and integration of advanced on-chip features. Nat. Rev. Phys. 2(6), 285–299 (2020)

  10. C. Lacroûte, M. Souidi, P.-Y. Bourgeois, J. Millo, K. Saleh, E. Bigler, R. Boudot, V. Giordano, Y. Kersalé, Compact Yb\(^+\) optical atomic clock project: design principle and current status. J. Phys. Conf. Ser. 723, 012025 (2016)

    Article  Google Scholar 

  11. C. Rouki, L. Westerberg, and the CHICSi Development Group. Ultra-high vacuum compatibility measurements of materials for the CHICSi detector system. Phys. Scr. 2003(T104), 107 (2003)

  12. K.R. Brown, R.J. Clark, J. Labaziewicz, P. Richerme, D.R. Leibrandt, I.L. Chuang, Loading and characterization of a printed-circuit-board atomic ion trap. Phys. Rev. A 75(1), 015401 (2007)

    Article  ADS  Google Scholar 

  13. B. Szymanski, R. Dubessy, B. Dubost, S. Guibal, J.-P. Likforman, L. Guidoni, Large two dimensional Coulomb crystals in a radio frequency surface ion trap. Appl. Phys. Lett. 100(17), 171110 (2012)

    Article  ADS  Google Scholar 

  14. N.D. Guise, S.D. Fallek, H. Hayden, C.-S. Pai, C. Volin, K.R. Brown, J.T. Merrill, A.W. Harter, J.M. Amini, L.M. Lust, K. Muldoon, D. Carlson, J. Budach, In-vacuum active electronics for microfabricated ion traps. Rev. Sci. Instrum. 85(6), 063101 (2014)

    Article  ADS  Google Scholar 

  15. J. Chiaverini, R.B. Blakestad, J. Britton, J.D. Jost, C. Langer, D. Leibfried, R. Ozeri, D.J. Wineland, Surface-electrode architecture for ion-trap quantum information processing. Quantum Inf. Comput. 5(6), 419–439 (2005)

    MathSciNet  MATH  Google Scholar 

  16. M. Delehaye, C. Lacroûte, Single-ion, transportable optical atomic clocks. J. Mod. Opt. 65(5–6), 622–639 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  17. M.G. House, Analytic model for electrostatic fields in surface-electrode ion traps. Phys. Rev. A 78, 033402 (2008)

    Article  ADS  Google Scholar 

  18. M. Johanning, A. Braun, D. Eiteneuer, C. Paape, C. Balzer, W. Neuhauser, C. Wunderlich, Resonance-enhanced isotope-selective photoionization of YbI for ion trap loading. Appl. Phys. B 103(2), 327–338 (2011)

    Article  ADS  Google Scholar 

  19. T. Lauprêtre, L. Groult, B. Achi, M. Petersen, Y. Kersalé, M. Delehaye, C. Lacroûte, Absolute frequency measurements of the \(^1\)S\(_0\rightarrow ^1\)P\(_1\) transition in ytterbium. OSA Continuum 3(1), 50–57 (2020)

    Article  Google Scholar 

  20. W.M. Itano, D.J. Wineland, Laser cooling of ions stored in harmonic and Penning traps. Phys. Rev. A 25, 35–54 (1982)

    Article  ADS  Google Scholar 

  21. K. Saleh, J. Millo, A. Didier, Y. Kersalé, C. Lacroûte, Frequency stability of a wavelength meter and applications to laser frequency stabilization. Appl. Opt. 54(32), 9446–9449 (2015)

    Article  ADS  Google Scholar 

  22. C. Tamm, S. Weyers, B. Lipphardt, E. Peik, Stray-field-induced quadrupole shift and absolute frequency of the 688-THz \(^{171}{{\rm Yb}} ^{+}\) single-ion optical frequency standard. Phys. Rev. A 80, 043403 (2009)

    Article  ADS  Google Scholar 

  23. S. Seidelin, J. Chiaverini, R. Reichle, J.J. Bollinger, D. Leibfried, J. Britton, J.H. Wesenberg, R.B. Blakestad, R.J. Epstein, D.B. Hume, W.M. Itano, J.D. Jost, C. Langer, R. Ozeri, N. Shiga, D.J. Wineland, Microfabricated surface-electrode ion trap for scalable quantum information processing. Phys. Rev. Lett. 96(25), 253003 (2006)

    Article  ADS  Google Scholar 

  24. J. Britton, D. Leibfried, J.A. Beall, R.B. Blakestad, J.H. Wesenberg, D.J. Wineland, Scalable arrays of RF Paul traps in degenerate SI. Appl. Phys. Lett. 95(17), 173102–173102-3 (2009)

    Article  ADS  Google Scholar 

  25. J. Stuart, R. Panock, C.D. Bruzewicz, J.A. Sedlacek, R. McConnell, I.L. Chuang, J.M. Sage, J. Chiaverini, Chip-integrated voltage sources for control of trapped ions. Phys. Rev. Appl. 11(2), 024010 (2019)

    Article  ADS  Google Scholar 

  26. K. Sugiyama, J. Yoda, Disappearance of Yb\(^{+}\) in excited states from rf trap by background gases. Jpn. J. Appl. Phys. 34(Part 2, No. 5A), L584–L586 (1995)

    Article  ADS  Google Scholar 

  27. T.M. Hoang, Y.-Y. Jau, R. Overstreet, P.D.D. Schwindt, \({\rm YbH }^{+}\) formation in an ytterbium ion trap. Phys. Rev. A 101, 022705 (2020)

    Article  ADS  Google Scholar 

  28. H.C. Nägerl, D. Leibfried, F. Schmidt-Kaler, J. Eschner, R. Blatt, Coherent excitation of normal modes in a string of Ca\(^+\) ions. Opt. Express 3(2), 89–96 (1998)

    Article  ADS  Google Scholar 

  29. D.J. Berkeland, J.D. Miller, J.C. Bergquist, W.M. Itano, D.J. Wineland, Minimization of ion micromotion in a Paul trap. J. Appl. Phys. 83(10), 5025–5033 (1998)

    Article  ADS  Google Scholar 

  30. A.D. Ludlow, M.M. Boyd, J. Ye, E. Peik, P.O. Schmidt, Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015)

    Article  ADS  Google Scholar 

  31. T.F. Gloger, P. Kaufmann, D. Kaufmann, M.T. Baig, T. Collath, M. Johanning, C. Wunderlich, Ion-trajectory analysis for micromotion minimization and the measurement of small forces. Phys. Rev. A 92, 043421 (2015)

    Article  ADS  Google Scholar 

  32. M. Abdel-Hafiz et al. Guidelines for developing optical clocks with \(10^{-18}\) fractional frequency uncertainty (2019). arXiv:1906.11495

  33. J. Keller, H.L. Partner, T. Burgermeister, T.E. Mehlstäubler, Precise determination of micromotion for trapped-ion optical clocks. J. Appl. Phys. 118(10), 104501 (2015)

    Article  ADS  Google Scholar 

  34. U. Tanaka, K. Masuda, Y. Akimoto, K. Koda, Y. Ibaraki, S. Urabe, Micromotion compensation in a surface electrode trap by parametric excitation of trapped ions. Appl. Phys. B 107(4), 907–912 (2012)

    Article  ADS  Google Scholar 

  35. Q.A. Turchette, B.E. King, D. Leibfried, D.M. Meekhof, C.J. Myatt, M.A. Rowe, C.A. Sackett, C.S. Wood, W.M. Itano, C. Monroe, D.J. Wineland, Heating of trapped ions from the quantum ground state. Phys. Rev. A 61, 063418 (2000)

    Article  ADS  Google Scholar 

  36. M. Brownnutt, M. Kumph, P. Rabl, R. Blatt, Ion-trap measurements of electric-field noise near surfaces. Rev. Mod. Phys. 87, 1419–1482 (2015)

    Article  ADS  Google Scholar 

  37. J.H. Wesenberg, R.J. Epstein, D. Leibfried, R.B. Blakestad, J. Britton, J.P. Home, W.M. Itano, J.D. Jost, E. Knill, C. Langer, R. Ozeri, S. Seidelin, D.J. Wineland, Fluorescence during doppler cooling of a single trapped atom. Phys. Rev. A 76, 053416 (2007)

    Article  ADS  Google Scholar 

  38. R.J. Epstein, S. Seidelin, D. Leibfried, J.H. Wesenberg, J.J. Bollinger, J.M. Amini, R.B. Blakestad, J. Britton, J.P. Home, W.M. Itano, J.D. Jost, E. Knill, C. Langer, R. Ozeri, N. Shiga, D.J. Wineland, Simplified motional heating rate measurements of trapped ions. Phys. Rev. A 76, 033411 (2007)

    Article  ADS  Google Scholar 

  39. I.A. Boldin, A. Kraft, C. Wunderlich, Measuring anomalous heating in a planar ion trap with variable ion-surface separation. Phys. Rev. Lett. 120, 023201 (2018)

    Article  ADS  Google Scholar 

  40. B. Srivathsan, M. Fischer, L. Alber, M. Weber, M. Sondermann, G. Leuchs, Measuring the temperature and heating rate of a single ion by imaging. New J. Phys. 21(11), 113014 (2019)

    Article  ADS  Google Scholar 

  41. S. Knünz, M. Herrmann, V. Batteiger, G. Saathoff, T.W. Hänsch, Th. Udem, Sub-millikelvin spatial thermometry of a single Doppler-cooled ion in a Paul trap. Phys. Rev. A 85, 023427 (2012)

    Article  ADS  Google Scholar 

  42. V. Rajagopal, J.P. Marler, M.G. Kokish, B.C. Odom, Trapped ion chain thermometry and mass spectrometry through imaging. Eur. J. Mass Spectrom. 22(1), 1–7 (2016)

    Article  Google Scholar 

  43. T. Lauprêtre, R.B. Linnet, I.D. Leroux, H. Landa, A. Dantan, M. Drewsen, Controlling the potential landscape and normal modes of ion coulomb crystals by a standing-wave optical potential. Phys. Rev. A 99, 031401 (2019)

    Article  ADS  Google Scholar 

  44. D.A. Hite, Y. Colombe, A.C. Wilson, K.R. Brown, U. Warring, R. Jördens, J.D. Jost, K.S. McKay, D.P. Pappas, D. Leibfried, D.J. Wineland, 100-fold reduction of electric-field noise in an ion trap cleaned with in situ argon-ion-beam bombardment. Phys. Rev. Lett. 109, 103001 (2012)

    Article  ADS  Google Scholar 

  45. M. Schacht, J.R. Danielson, S. Rahaman, J.R. Torgerson, J. Zhang, M.M. Schauer, \(^{171}\)Yb\(^+\)\(^5\)D\(_{3/2}\) hyperfine state detection and F = 2 lifetime. J. Phys. B At. Mol. Opt. Phys. 48(6), 065003 (2015)

    Article  ADS  Google Scholar 

  46. N. Yu, L. Maleki, Lifetime measurements of the \({4f}^{14}5d\) metastable states in single ytterbium ions. Phys. Rev. A 61, 022507 (2000)

    Article  ADS  Google Scholar 

  47. D.M. Meekhof, C. Monroe, B.E. King, W.M. Itano, D.J. Wineland, Generation of nonclassical motional states of a trapped atom. Phys. Rev. Lett. 76, 1796–1799 (1996)

    Article  ADS  Google Scholar 

  48. D.M. Meekhof, C. Monroe, B.E. King, W.M. Itano, D.J. Wineland, Generation of nonclassical motional states of a trapped atom. Phys. Rev. Lett. 77, 2346 (1996)

    Article  ADS  Google Scholar 

  49. D.J. Wineland, C. Monroe, W.M. Itano, D. Leibfried, B.E. King, D.M. Meekhof, Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Nat. Inst. Stand. Technol. 103(3), 259 (1998)

    Article  MATH  Google Scholar 

  50. C. F. Roos, Controlling the Quantum State of Trapped Ions. PhD thesis, Universität Innsbruck, Fakultät der Leopold-Franzens-Universität Innsbruck, Innsbruck (2000)

  51. W.M. Itano, External-field shifts of the \(^{199}\)Hg\(^+\) optical frequency standard. J. Res. Nat. Inst. Stand. Technol. 105(27551639), 829–837 (2000)

    Article  Google Scholar 

  52. A. Roy, S. De, B. Arora, B.K. Sahoo, Accurate determination of black-body radiation shift, magic and tune-out wavelengths for the \(^6\)S\(_{1/2}\)\(\rightarrow \)\(^5\)D\(_{3/2}\) clock transition in Yb\(^+\). J. Phys. B At. Mol. Opt. Phys. 50(20), 205201 (2017)

  53. T. Schneider, E. Peik, C. Tamm, Sub-hertz optical frequency comparisons between two trapped \(^{171}{{\rm Yb}}^{+}\) ions. Phys. Rev. Lett. 94, 230801 (2005)

    Article  ADS  Google Scholar 

  54. S. Hannig, L. Pelzer, N. Scharnhorst, J. Kramer, M. Stepanova, Z.T. Xu, N. Spethmann, I.D. Leroux, T.E. Mehlstäubler, P.O. Schmidt, Towards a transportable aluminium ion quantum logic optical clock. Rev. Sci. Instrum. 90(5), 053204 (2019)

    Article  ADS  Google Scholar 

  55. R. Lange, N. Huntemann, J.M. Rahm, C. Sanner, H. Shao, B. Lipphardt, C. Tamm, S. Weyers, E. Peik, Improved limits for violations of local position invariance from atomic clock comparisons. Phys. Rev. Lett. 126(1), 011102 (2021)

    Article  ADS  Google Scholar 

  56. N. Yu, X. Zhao, H. Dehmelt, W. Nagourney, Stark shift of a single barium ion and potential application to zero-point confinement in a RF trap. Phys. Rev. A 50(3), 2738–2741 (1994)

    Article  ADS  Google Scholar 

  57. P. Dubé, A.A. Madej, J.E. Bernard, L. Marmet, J.-S. Boulanger, S. Cundy, Electric quadrupole shift cancellation in single-ion optical frequency standards. Phys. Rev. Lett. 95(3), 033001 (2005)

    Article  ADS  Google Scholar 

  58. K.-Y. Lin, G.H. Low, I.L. Chuang, Effects of electrode surface roughness on motional heating of trapped ions. Phys. Rev. A 94(1), 013418 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Alexis Mosset and Fabrice Devaux for letting us borrow the EMCCD used for heating rate measurements with ion pictures. We also thank Philippe Abbé, Valérie Soumann and Yannick Gruson for their technical help and support with the trapping chip and its electrical connections. We thank Rodolphe Boudot for his thorough reading of the manuscript. The authors thank the MIMENTO technological facility of FEMTO-ST, part of the RENATECH network, for providing technical support.

Funding

This work has been supported by the Agence Nationale de la Recherche (ANR-14-CE26-0031-01 MITICC, ANR-10-LABX-48-01 First-TF, and ANR-11-EQPX-0033 Oscillator-IMP), the Région Bourgogne Franche-Comté, the Centre National d’Études Spatiales and the EIPHI Graduate School (contract “ANR-17-EURE-0002”).

Author information

Authors and Affiliations

Authors

Contributions

T. Lauprêtre and C. Lacroûte wrote the main manuscript text. T. Lauprêtre was involved in all experimental works and results analysis, and prepared the figures. B. Achi was involved in the data taking, results analysis, and setup of the experiment automated control. L. Groult was involved in setting up the ion trap and optical bench and in data taking for trap lifetime measurements. E. Carry helped setting up the laser frequency locks and supervised Bachir Achi for network control of the instruments. Y. Kersalé supervised L. Groult PhD and was involved in the experiment preparation. M. Delehaye was involved in setting up the ion trap and optical bench, in the data taking and results analysis. M. Abdel Hafiz was involved in the data taking, results analysis, and setup of the experiment automated control. C. Lacroûte was involved in setting up the ion trap and optical bench, in the data taking and results analysis. All authors reviewed the manuscript.

Corresponding author

Correspondence to Clément Lacroûte.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lauprêtre, T., Achi, B., Groult, L. et al. Heating rate measurement and characterization of a prototype surface-electrode trap for optical frequency metrology. Appl. Phys. B 129, 37 (2023). https://doi.org/10.1007/s00340-023-07982-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-07982-4

Navigation