Skip to main content
Log in

Negatively chirped pulse compressor with internal telescope for 1.4 µm range

  • Regular Paper
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The peculiarities analysis in design of compressors for negatively chirped optical pulses parametrically amplified in double-chirped regime up to 1 J in multi-cascade system is done. A comparative analysis of the spatio-temporal distribution of the pulses at the output of various compressor schemes with an internal telescope has been performed. The analysis has been carried out using two methods: calculating additional compressor dispersion using the Seidel aberration coefficients of the internal telescope and the ray tracing method. A ray-tracing algorithm has been developed that allows to calculate the spatiotemporal and spatiospectral pulse intensity distributions at the output of compressors with an internal telescope. The on-axis and off-axis Offner schemes, Martinez scheme compressor and compressor scheme with a single-lens internal telescope are analyzed. It is shown, that the ray tracing method more accurately takes into account system aberrations, including high-order aberrations, while the calculation with the Seidel aberration coefficients takes into account only primary aberrations. According to the analysis, the optimal scheme of a grating compressor with an internal telescope for compressing negatively chirped pulses in the range of 1410 nm to a duration of less than 40 fs and energies up to ~ 0.8 J is the off-plane Offner scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. V. I. Trunov, S. A. Frolov, E. V Pestryakov, in 21st International Symposium on Atmospheric Ocean and Optics Atmospheric Physics (2015), p. 96803N

  2. J.V. Rudd, R.J. Law, T.S. Luk, S.M. Cameron, Opt. Lett. 30, 1974 (2005)

    Article  ADS  Google Scholar 

  3. X. Guo, X. Tu, S. Tokita, Y. Zheng, J. Kawanaka, Laser Phys. 28, 85402 (2018)

    Article  Google Scholar 

  4. K. Zhao, H. Zhong, P. Yuan, G. Xie, J. Wang, J. Ma, L. Qian, Opt. Lett. 38, 2159 (2013)

    Article  ADS  Google Scholar 

  5. T. Kanai, P. Malevich, S.S. Kangaparambil, K. Ishida, M. Mizui, K. Yamanouchi, H. Hoogland, R. Holzwarth, A. Pugzlys, A. Baltuska, Opt. Lett. 42, 683 (2017)

    Article  ADS  Google Scholar 

  6. D. Sanchez, M. Hemmer, M. Baudisch, S.L. Cousin, K. Zawilski, P. Schunemann, O. Chalus, C. Simon-Boisson, J. Biegert, Optica 3, 147 (2016)

    Article  ADS  Google Scholar 

  7. Z. Nie, C.-H. Pai, J. Zhang, X. Ning, J. Hua, C. Zhang, Y. He, Y. Wu, Q. Su, S. Liu, et al., in CLEO QELS_Fundamental Science (2019), pp. FF1C--5

  8. C. Gollner, V. Shumakova, A. Pugzlys, A. Baltuska, P. Polynkin, in CLEO QELS_Fundamental Science (2019), pp. FF1C-2

  9. Q. Zhang, E.J. Takahashi, O.D. Mücke, P. Lu, K. Midorikawa, Opt. Express 19, 7190 (2011)

    Article  ADS  Google Scholar 

  10. Y. Fu, E. J. Takahashi, B. Xue, K. Midorikawa, in 2017 Conference on Lasers Electro-Optics (2017), pp. 1–2

  11. Z. Zhang, T. Yagi, T. Arisawa, Appl. Opt. 36, 3393 (1997)

    Article  ADS  Google Scholar 

  12. J. Jiang, Z. Zhang, T. Hasama, JOSA B 19, 678 (2002)

    Article  ADS  Google Scholar 

  13. B.E. Lemoff, C.P.J. Barty, Opt. Lett. 18, 1651 (1993)

    Article  ADS  Google Scholar 

  14. W. A. Molander, A. J. Bayramian, R. Campbell, R. R. Cross, G. Huete, N. Schenkle, C. Ebbers, J. Caird, C. P. J. Barty, and C. W. Siders, in Advanced Solid-State Photonics (2009), p. MB1

  15. Z. Zhang, S. Harayama, T. Yagi, T. Arisawa, Appl. Phys. Lett. 67, 176 (1995)

    Article  ADS  Google Scholar 

  16. M. Born, E. Wolf, Principles of Optics (Elsevier, Amsterdam, 2013)

    MATH  Google Scholar 

  17. Š. Vyhlídka, D. Kramer, G. Kalinchenko, B. Rus, Opt. Express 24, 30421 (2016)

    Article  ADS  Google Scholar 

  18. S. Wise, V. Quetschke, A.J. Deshpande, G. Mueller, D.H. Reitze, D.B. Tanner, B.F. Whiting, Y. Chen, A. Tünnermann, E. Kley, T. Clausnitzer, Phys. Rev. Lett. 95, 13901 (2005)

    Article  ADS  Google Scholar 

  19. O. Martinez, IEEE J. Quantum Electron. 23, 59 (1987)

    Article  ADS  Google Scholar 

  20. G. Ohmae, T. Yagi, K. Nanri, T. Fujioka, Jpn. J. Appl. Phys. 39, 5864 (2000)

    Article  ADS  Google Scholar 

  21. J.V. Rudd, G. Korn, S. Kane, J. Squier, G. Mourou, P. Bado, Opt. Lett. 18, 2044 (1993)

    Article  ADS  Google Scholar 

  22. J. Bromage, M. Millecchia, J. Bunkenburg, R. K. Jungquist, C. Dorrer, J. D. Zuegel, in 2012 Conference on Lasers Electro-Optics (2012), pp. 1–2

  23. W.T. Welford, Aberrations of Optical Systems (Routledge, London, 2017)

    Book  Google Scholar 

  24. R. Danilevičius, A. Zaukevičius, R. Budriūnas, A. Michailovas, N. Rusteika, Opt. Express 24, 17532 (2016)

    Article  ADS  Google Scholar 

  25. S.N. Bagayev, V.I. Trunov, E.V. Pestryakov, V.E. Leshchenko, S.A. Frolov, V.A. Vasiliev, Quantum Electron. 44, 415 (2014)

    Article  ADS  Google Scholar 

  26. V. Bagnoud, F. Salin, JOSA B 16, 188 (1999)

    Article  ADS  Google Scholar 

  27. LAYERTEC GmbH (2020) https://www.layertec.de/en/capabilities/quality-control/

Download references

Acknowledgements

This work is supported in parts by RAS Presidium Program №6 (project 0307-2018-0013) and Fundamental Research Program of Siberian Branch of Russian Academy of Sciences (project 0307-2017-0011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitriy Shvydkoy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shvydkoy, D., Trunov, V. Negatively chirped pulse compressor with internal telescope for 1.4 µm range. Appl. Phys. B 126, 116 (2020). https://doi.org/10.1007/s00340-020-07467-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-07467-8

Navigation