Skip to main content
Log in

Study of spatial thermal distribution of gold nanourchins in saline by combined transverse probe beam deflection and beam wavefront sensor: biomedical implications

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Combined probe beam deflection (PBD) and wavefront sensor (WFS) technique are used to investigate the thermal distribution of gold nanourchins (GNU) in physiological saline (PS) using a low-power continuous NIR diode laser. Three different samples were prepared for the experiment: (S1) 0.5 mg/mL GNU only, (S2) 0.5 mL PS and 0.3 mL GNU, and (S3) 0.5 mL PS and 0.1 mL GNU. The laser transmission initially increases linearly as S3 > S2 > S1, but reaches a plateau and remains constant. The probe beam response in an adjective statistics process exhibited a stochastic behaviour at different positions and constant power in x- and y-directions. The beam view profiles showed a non-uniform intensity distribution and the addition of PS dramatically caused a blue shift indicating its cooling effect, S1 (20) warmer > S1(10) medium > S2 (20) cooler. S1 (10), S1 (20), and S2 (20) correspond to the samples irradiated with the laser power (mW) shown in the bracket. The peak-to-valley (PV) and root-mean-square (RMS) values demonstrated a non-linear intensity distribution during the scanning process. The greater PV values in deeper positions may well due to agglomeration, hence the sedimentation process. The Zernike coefficients with high absolute values represent the aberrations that cause the greatest distortion of the wavefront and found in the order of S2(20) > S1(10) > S1(20). This is consistent with PV wavefront slope and spatial period aberration relation. The opto-thermal coefficients were obtained as S2 (− 7.86 × 10−4) > S3: 0.5 mL PS and 0.1 ml GNU (− 6.3 × 10−4), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D. Lapotko, Opt. Exp. 17, 2538–2556 (2009)

    ADS  Google Scholar 

  2. E. Ozbay, Science 311, 189–193 (2006)

    ADS  Google Scholar 

  3. M. Gellner, B. Kustner, S. Schlucker, Vib. Spect. 50, 43–47 (2009)

    Google Scholar 

  4. A. Haes, S. Zou, G. Schatz, J. Phys. Chem. B 108, 109–116 (2004)

    Google Scholar 

  5. M. Tajabadi, M.E. Khosroshahi, Sh Bonakdar, Opt. Photonics J. 5, 212–226 (2015)

    ADS  Google Scholar 

  6. H. He, Ch. Xie, J. Ren, Anal. Chem. 80, 5951–5957 (2008)

    Google Scholar 

  7. M.E. Khosroshahi, M. Tajabadi, J. Nanomed. Nanotechnol. 8, 1–10 (2017)

    Google Scholar 

  8. S. Park, J. Lee, T. Lee, S. Bae, Int. J. Nanomed. 10, 261–270 (2015)

    Google Scholar 

  9. V.P. Pattani, J. Tunnell, Lasers Surg. Med. 44, 675–684 (2012)

    Google Scholar 

  10. V.K. Pustovalov, L.G. Astafyeva, E. Galanzha, Cancer Nano 1, 35–56 (2010)

    Google Scholar 

  11. M. Lechiner, J. Serb. Chem. Soc. 70, 361–369 (2005)

    Google Scholar 

  12. A.O. Pinchuk, G.C. Schatz, Appl. Phys. B 93, 31–38 (2008)

    ADS  Google Scholar 

  13. C. Noguez, J. Phys. Chem. C 111, 3806–3819 (2007)

    Google Scholar 

  14. H. Richardson, M. Carison, P. Tandler 9, 1139–1146 (2009)

    Google Scholar 

  15. K. Yong, M.T. Swihart, H. Ding, Plasmonics 4, 79–93 (2009)

    Google Scholar 

  16. M.E. Khosroshahi, A. Mandelis, B. Lashkari, J. Biomed. Opt. 20, 1–12 (2015)

    Google Scholar 

  17. M.E. Khosroshahi, M. Asemani, J. Mod. Phys. 8, 2219–2244 (2017)

    Google Scholar 

  18. H.Q. Xie, H. Lee, W. Youn, J. Appl. Phys. 94, 4967–4974 (2003)

    ADS  Google Scholar 

  19. X.L. Chu, A. Nikolov, D. Wasan, Langmuir 12, 5004–5010 (1996)

    Google Scholar 

  20. D. Lapotko, Int. J. Heat Mass Tran. 52, 1540–1543 (2009)

    Google Scholar 

  21. Z. Liu, Y. Wu, Z. Guo, Y. Liu, PLoS One 9, 1–11 (2014)

    Google Scholar 

  22. B. Khlebtsov, V. Zharov, A. Meluikov, V. Tuchin, Nanotech. 17, 5167–5179 (2006)

    ADS  Google Scholar 

  23. M.E. Khosroshahi, L. Ghazanfari, P. Khoshkenar, J. Mod. Phys. 5, 2125–2141 (2014)

    Google Scholar 

  24. G. Baffou, R. Quidant, Laser Photonics Rev. 7, 171–187 (2013)

    ADS  Google Scholar 

  25. B. Fasla, A. Senoudi, A. Boussaid, J. Biomat. Nanobiotech. 2, 49–54 (2011)

    Google Scholar 

  26. V. Giannini, R. Rodriguez-Olivros, A. Sanchez-Gil, Plasmonics 5, 99–104 (2010)

    Google Scholar 

  27. S.D. Indrasekara, S. Meyers, S. Shubeita, L.C. Feldman, T. Gustafsson, L. Fabris, 6, 8891–8899 (2014)

  28. Z. Qin, Y. Wang, J. Randrianalisoa, V. Raeesi, Sci. Rep. 6, 1–11 (2016)

    Google Scholar 

  29. H. Ma, P. Tian, J. Pello, L. Oddershed, NanoLett. 14, 612–619 (2014)

    ADS  Google Scholar 

  30. R. Rodriguez-Oliveros, J. Sanchez-Gill, Opt. Exp. 20, 621–626 (2012)

    ADS  Google Scholar 

  31. M.E. Khosroshahi, A. Mandelis, B. Lashkari, J. Biomed. Opt. 20(1–2), 076009 (2015)

    ADS  Google Scholar 

  32. M.E. Khosroshahi, A. Mandelis, Int. J. Thermophys. 36, 880–891 (2015)

    ADS  Google Scholar 

  33. J. Zho, J. Shen, C. Hu, Opt. Lett. 27, 1755–1757 (2002)

    ADS  Google Scholar 

  34. R. Silvia, M. de Araujo, P. Jail, S. Moreira, AIP Adv. 1, 1–6 (2011)

    Google Scholar 

  35. R.D. Snook, R. Lowe, Analyst 120, 2051–2054 (1995)

    ADS  Google Scholar 

  36. R. Elias, Q. Hassan, H. Sultan, A. Al-Asad, Opt. Laser Tech. 107, 131–141 (2018)

    ADS  Google Scholar 

  37. A. Dhina, P. Palanisamy, J. Biomed. Sci. Eng. 3, 285–290 (2010)

    Google Scholar 

  38. A. Tam, Rev. Mod. Phys. 58, 381–431 (1986)

    ADS  Google Scholar 

  39. X. Yu, Y. Yao, Y. Sun, J. Tian, Optik 122, 1701–1706 (2011)

    ADS  Google Scholar 

  40. I. Kwee, J.J. Braat, Pure Appl. Opt. 2, 21–32 (1993)

    ADS  Google Scholar 

  41. D. Rativa, R. de Araujo, A. Gomes, B. Vohnsen, Opt. Exp. 17, 2207-22047–22053 (2009)

    Google Scholar 

  42. J. Diaz, J. Fernandez-Dorado, C. Pizarro, J. Arasa, J. Mod. Opt. 56, 149–155 (2009)

    Google Scholar 

  43. T. Salmon, C. van de Pol, J. Cat. Ref. 32, 2064–2071 (2006)

    Google Scholar 

  44. M.S. Kirilenko, P. Khorin, A. Porfirev, Comput. Opt. Nanophot. 1638, 66–75 (2016)

    Google Scholar 

  45. S. Brojabasi, V. Mahendran, B. Lahiri, J. Philip, Opt. Comput. 342, 224–229 (2015)

    ADS  Google Scholar 

  46. B. Derjaguin, L. Landau, Acta Physicochim. URSS 14, 633–662 (1941)

    Google Scholar 

  47. E. Verwey, J. Overbeek, Theory of Stability of Lyophobic Colloids (Elsevier Press, Amsterdam, 1948)

    Google Scholar 

  48. H. Loria, P. Pereira-Almao, C. Scott, Ind. Eng. Chem. Res. 50, 8529 (2011)

    Google Scholar 

  49. S. Ganguly, S. Chakraborty, Phys. Lett. A 375, 2394–2399 (2011)

    ADS  Google Scholar 

  50. A.O. Govorov, W. Zhang, T. Skeini, H. Richardson, Nanoscale Res. Lett. 1, 84–90 (2006)

    ADS  Google Scholar 

  51. A. Polo, V. Kutchoukov, F. Bociort, S. Pereira, H. Urbach, Opt. Exp. 20, 7822–7832 (2012)

    ADS  Google Scholar 

  52. J. Park, W. Lu, J. Phys. Rev. E 83, 031402 (2011)

    ADS  Google Scholar 

  53. V. Slabko, A. Tsipotan, A. Aleksandrovsky, E. Slyuareva, Appl. Phys. B 117, 271–278 (2014)

    ADS  Google Scholar 

  54. C. Bayer, S. Yun Nam, Y. Chen, J. Biomed. Opt. 18, 016001 (2013)

    ADS  Google Scholar 

  55. J. Fan, L. Wang, J. Heat Trans. 133, 04080-1-14 (2011)

    Google Scholar 

  56. Y. Yang, T. Ho, Appl. Spect. 41, 583–585 (1987)

    ADS  Google Scholar 

  57. P. Jain, J. Phys. Chem. B 110, 7238–7248 (2006)

    Google Scholar 

  58. S.V. Perminov, V.P. Drachev, S. Rautian, Opt. Exp. 15, 8639–8648 (2007)

    ADS  Google Scholar 

  59. L. Ghazanfari, M.E. Khosroshahi, Mat. Sci. Eng. C 42, 185–191 (2014)

    Google Scholar 

  60. M.E. Khosroshahi, L. Ghazanfari, Z. Hassannejad, S. Lenhert 4, 1–9 (2015)

    Google Scholar 

  61. M. Ortega, L. Rodriguez, J. Piscitelli, A. Fernandez, J. Opt. A Pure Appl. Opt. 10, 1–4 (2008)

    Google Scholar 

  62. G. Baffou, H. Rigneault, Phys. Rev. B 84, 035415 (2011)

    ADS  Google Scholar 

  63. A. Govorov, H. Richardson, Nano Today 2, 30–38 (2007)

    Google Scholar 

  64. P. Shima, J. Philip, Indust. Eng. Chem. Res. 53, 980–988 (2013)

    Google Scholar 

  65. Y. Xuan, Q. Li, Heat Fluid Flow 21, 58–64 (2000)

    Google Scholar 

  66. F. Cuppo, A. Figueirds Neto, S. Gomez, J. Opt. Soc. Am. B 19, 1342–1349 (2002)

    ADS  Google Scholar 

  67. W. Jost, Diffusion of Solids, Liquids, Gases, Chapter I and XI, III edn. (Academic Press, New York, 1952)

    Google Scholar 

  68. A. Kurian, C. Bindhu, S. Harilal, R. Issac, PRAMAN J. Phys. 43, 401–406 (1994)

    ADS  Google Scholar 

Download references

Acknowledgements

Professor MEK greatly appreciates and acknowledges the support and research funding provided by MIS-Electronics R&D department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad E. Khosroshahi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosroshahi, M.E. Study of spatial thermal distribution of gold nanourchins in saline by combined transverse probe beam deflection and beam wavefront sensor: biomedical implications. Appl. Phys. B 125, 229 (2019). https://doi.org/10.1007/s00340-019-7338-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7338-1

Navigation