Skip to main content
Log in

Graphene-based plasmonic electro-optic modulator with sub-wavelength thickness and improved modulation depth

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A graphene layer has high absorption with very low thickness. The chemical potential of graphene change by an applied voltage and then it leads to the variable optical absorption of graphene. These properties make graphene a suitable absorber layer in optoelectronic devices. The graphene layer is placed in the position of the maximum optical field that causes the maximum absorption. In this paper, an electro-optics modulator is designed with one and two graphene layers with the sub-wavelength thickness. The applied voltage causes change in the chemical potential of graphene and causes change in the graphene absorption. Therefore, the propagating wave would be modulated. The presence of the graphene layer has caused the proposed modulator to have a relatively uniform response in a broad range of frequencies. Simulations show that increasing the number of graphene layers improved the modulation properties. This modulator has a very low thickness and can be integrated into optical circuits. This modulator is applicable in mode-locking laser systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G.T. Reed, G. Mashanovich, F.Y. Gardes, D.J. Thomson, Silicon optical modulators. Nat. Photonics 4(8), 518–526 (2010)

    Article  ADS  Google Scholar 

  2. D.J. Thomson, F.Y. Gardes, J.M. Fedeli, S. Zlatanovic, Y. Hu, B.P. Kuo, E. Myslivets et al., 50-Gb/s silicon optical modulator. IEEE Photonics Technol. Lett. 24(4), 234–236 (2012)

    Article  ADS  Google Scholar 

  3. M. Lipson, Compact electro-optic modulators on a silicon chip. IEEE J. Sel. Top. Quantum Electron 12(6), 1520–1526 (2006)

    Article  Google Scholar 

  4. L. Zhou, A.W. Poon, Silicon electro-optic modulators using pin diodes embedded 10-micron-diameter microdisk resonators. Opt. Expr. 14(15), 6851–6857 (2006)

    Article  ADS  Google Scholar 

  5. P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.C. Kung et al., Low V pp, ultralow-energy, compact, high-speed silicon electro-optic modulator. Opt. Expr. 17(25), 22484–22490 (2009)

    Article  ADS  Google Scholar 

  6. B. Schmidt, Q. Xu, J. Shakya, S. Manipatruni, M. Lipson, Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes. Opt. Expr. 15(6), 3140–3148 (2007)

    Article  ADS  Google Scholar 

  7. S. Haxha, B.A. Rahman, K.T. Grattan, Bandwidth estimation for ultra-high-speed lithium niobate modulators. Appl. optics 42(15), 2674–2682 (2003)

    Article  ADS  Google Scholar 

  8. E.L. Wooten, K.M. Kissa, A. Yi-Yan, E.J. Murphy, D.A. Lafaw, P.F. Hallemeier, D. Maack, D.V. Attanasio, D.J. Fritz, G.J. McBrien, D.E. Bossi, A review of lithium niobate modulators for fiber-optic communications systems. IEEE J. Sel. Top. Quantum Electron 6(1), 69–82 (2000)

    Article  Google Scholar 

  9. Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator.”. Nature 435(7040), 325–327 (2005)

    Article  ADS  Google Scholar 

  10. Y.H. Kuo, Y.K. Lee, Y. Ge, S. Ren, J.E. Roth, T.I. Kamins, D.A. Miller, J.S. Harris Jr., Quantum-confined Stark effect in Ge/SiGe quantum wells on Si for optical modulators. IEEE J. Sel. Top. Quantum Electron. 12(6), 1503 (2006)

    Article  Google Scholar 

  11. Y.H. Kuo, Y.K. Lee, Y. Ge, R. Shen, J.E. Roth, T.I. Kamins, D.A.B. Miller, J.S. Harris, Strong quantum-confined Stark effect in germanium quantum-well structures on silicon. Nature 437(7063), 1334–1336 (2005)

    Article  ADS  Google Scholar 

  12. Y. Rong, Y. Ge, Y. Huo, M. Fiorentino, M.R. Tan, T.I. Kamins, T.J. Ochalski, G. Huyet, J.S. Harris Jr., Quantum-confined Stark effect in Ge/SiGe quantum wells on Si. IEEE J. Sel. Top. Quantum Electron. 16(1), 85–92 (2010)

    Article  Google Scholar 

  13. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    Article  ADS  Google Scholar 

  14. A.N. Grigorenko, M. Polini, K.S. Novoselov, Graphene plasmonics. Nat. Photonics 6(11), 749–758 (2012)

    Article  ADS  Google Scholar 

  15. K.S. Novoselov, V.I. Fal, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene. Nature 490(7419), 192–200 (2012)

    Article  ADS  Google Scholar 

  16. A.C. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109 (2009)

    Article  ADS  Google Scholar 

  17. X. Du, I. Skachko, A. Barker, E.Y. Andrei, Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3(8), 491–495 (2008)

    Article  ADS  Google Scholar 

  18. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)

    Article  ADS  Google Scholar 

  19. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308 (2008)

    Article  ADS  Google Scholar 

  20. F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, Y.R. Shen, Gate-variable optical transitions in graphene. Science 320(5873), 206–209 (2008)

    Article  ADS  Google Scholar 

  21. X Liu, Z Chen, EP Parrott, BS Ung, J Xu, E Pickwell-MacPherson. Graphene based terahertz light modulator in total internal reflection geometry. Adv. Opt. Mater. 5(3), 1600697 (2017)

    Article  Google Scholar 

  22. Y. Fan, N.H. Shen, T. Koschny, C.M. Soukoulis, Tunable terahertz meta-surface with graphene cut-wires. Acs Photonics 2(1), 151–156 (2015)

    Article  Google Scholar 

  23. Y. Fan, N.H. Shen, F. Zhang, Z. Wei, H. Li, Q. Zhao, Q. Fu, P. Zhang, T. Koschny, C.M. Soukoulis, Electrically tunable Goos-Hänchen effect with graphene in the terahertz regime. Adv. Opt. Mater. 4(11), 1824–1828 (2016)

    Article  Google Scholar 

  24. Y. Fan, F. Zhang, Q. Zhao, Z. Wei, H. Li, Tunable terahertz coherent perfect absorption in a monolayer graphene. Opt. Lett. 39(21), 6269–6272 (2014)

    Article  ADS  Google Scholar 

  25. D.R. Andersen, Graphene-based long-wave infrared TM surface plasmon modulator. JOSA B 27(4), 818–823 (2010)

    Article  ADS  Google Scholar 

  26. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, A graphene-based broadband optical modulator. Nature 474, 64–67 (2011)

    Article  ADS  Google Scholar 

  27. M. Liu, X. Yin, X. Zhang, Double-layer graphene optical modulator. Nano Lett. 12(3), 1482–1485 (2012)

    Article  ADS  Google Scholar 

  28. S.J. Koester, M. Li, High-speed waveguide-coupled graphene-on-graphene optical modulators. Appl. Phys. Lett. 100(17), 171107 (2012)

    Article  ADS  Google Scholar 

  29. Z. Lu, W. Zhao, Nanoscale electro-optic modulators based on graphene-slot waveguides. JOSA B 29(6), 1490–1496 (2012)

    Article  ADS  Google Scholar 

  30. C.C. Lee, S. Suzuki, W. Xie, T.R. Schibli, Broadband graphene electro-optic modulators with sub-wavelength thickness. Opt. Express 20(5), 5264–5269 (2012)

    Article  ADS  Google Scholar 

  31. R. Hao, W. Du, H. Chen, X. Jin, L. Yang, E. Li, Ultra-compact optical modulator by graphene induced electro-refraction effect. Appl. Phys. Lett. 103(6), 061116 (2013)

    Article  ADS  Google Scholar 

  32. B. Xiao, R. Sun, J. He, K. Qin, S. Kong, J. Chen, W. Xiumin, A terahertz modulator based on graphene plasmonic waveguide. IEEE Photonics Technol. Lett. 27(20), 2190–2192 (2015)

    Article  ADS  Google Scholar 

  33. X. Chen, Y. Wang, Y. Xiang, G. Jiang, L. Wang, Q. Bao, H. Zhang, Y. Liu, S. Wen, D. Fan, A broadband optical modulator based on a graphene hybrid plasmonic waveguide. J. Lightwave Technol. 34(21), 4948–4953 (2016)

    Article  ADS  Google Scholar 

  34. X. Hu, J. Wang, High figure of merit graphene modulator based on long-range hybrid plasmonic slot waveguide. IEEE J. Quantum Electron. 53(3), 1–8 (2017)

    Article  MathSciNet  Google Scholar 

  35. C. Hoessbacher, A. Josten, B. Baeuerle, Y. Fedoryshyn, H. Hettrich, Y. Salamin, W. Heni et al., Plasmonic modulator with 170 GHz bandwidth demonstrated at 100 GBd NRZ. Opt. Express 25(3), 1762–1768 (2017)

    Article  ADS  Google Scholar 

  36. C. Zhang, L. Tu, Z. Huang, L. Liu, P. Zhan, C. Sun, Z. Wang, An electrically tunable plasmonic optical modulator with high modulation depth based on graphene-wrapped silver nanowire. J. Opt. 18(12), 125007 (2016)

    Article  ADS  Google Scholar 

  37. S. Ye, Z. Wang, L. Tang, Y. Zhang, R. Lu, Y. Liu, Electro-absorption optical modulator using dual-graphene-on-graphene configuration. Opt. Express 22(21), 26173–26180 (2014)

    Article  ADS  Google Scholar 

  38. A. Al Sayem, M.R. Mahdy, I. Jahangir, M.S. Rahman, Ultrathin ultra-broadband electro-absorption modulator based on few-layer graphene based anisotropic metamaterial. Optics Commun. 384, 50–58 (2017)

    Article  ADS  Google Scholar 

  39. D. Ansell, I.P. Radko, Z. Han, F.J. Rodriguez, S.I. Bozhevolnyi, A.N. Grigorenko, Hybrid graphene plasmonic waveguide modulators. Nat. Commun. 6, 8846 (2015)

    Article  ADS  Google Scholar 

  40. M. Chen, P. Sheng, W. Sun, J. Cai, A symmetric terahertz graphene-based hybrid plasmonic waveguide. Optics Commun. 376, 41–46 (2016)

    Article  ADS  Google Scholar 

  41. J.S. Shin, J.T. Kim, Broadband silicon optical modulator using a graphene-integrated hybrid plasmonic waveguide. Nanotechnology 26(36), 365201 (2015)

    Article  ADS  Google Scholar 

  42. D.C. Zografopoulos, M.A. Swillam, L.A. Shahada, R. Beccherelli, Hybrid electro-optic plasmonic modulators based on directional coupler switches. Appl. Phys. A 122(4), 1–6 (2016)

    Article  Google Scholar 

  43. B.H. Huang, W.B. Lu, X.B. Li, J. Wang, Z.G. Liu, Waveguide-coupled hybrid plasmonic modulator based on graphene. Appl. Opt. 55(21), 5598–5602 (2016)

    Article  ADS  Google Scholar 

  44. J. Zhu, J. Cheng, L. Zhang, Q.H. Liu, Modeling of 2D graphene material for plasmonic hybrid waveguide with enhanced near-infrared modulation. Mater. Lett. 186, 53–56 (2017)

    Article  Google Scholar 

  45. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D.M. Basko, A.C. Ferrari, Graphene mode-locked ultrafast laser. ACS Nano 4(2), 803–810 (2010)

    Article  Google Scholar 

  46. T. Stauber, N.M.R. Peres, A.K. Geim, Optical conductivity of graphene in the visible region of the spectrum. Phys. Rev. B 78(8), 085432 (2008)

    Article  ADS  Google Scholar 

  47. J. Gosciniak, D.T. Tan, Graphene-based waveguide integrated dielectric-loaded plasmonic electro-absorption modulators. Nanotechnology 24(18), 185202 (2013)

    Article  ADS  Google Scholar 

  48. C. Xu, Y. Jin, L. Yang, J. Yang, X. Jiang, Characteristics of electro-refractive modulating based on Graphene-oxide–silicon waveguide. Opt. Express 20(20), 22398–22405 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Vahed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vahed, H., Ahmadi, S.S. Graphene-based plasmonic electro-optic modulator with sub-wavelength thickness and improved modulation depth. Appl. Phys. B 123, 265 (2017). https://doi.org/10.1007/s00340-017-6845-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6845-1

Navigation