Skip to main content

Advertisement

Log in

Realization of omnidirectional ultra-broadband antireflection properties via subwavelength composite structures

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

An advanced subwavelength composite structure (SCS) consisting of the hexagonally arranged silicon nanopillars and the misaligned TiO2/SiO2 double-layer films was proposed on the surface of crystalline silicon (c-Si). After optimization through the finite difference time domain (FDTD) method, the SCS possesses omnidirectional ultra-broadband antireflection properties (average reflectance < 1.8% within 300–2500 nm) which are suitable for a photovoltaic-thermoelectric (PV-TE) hybrid system to enhance the full-spectrum solar energy utilization. Furthermore, the antireflection mechanism was studied in detail. The composition of nanopillars and double-layer films has combined the effect of interference, interpillar scattering and waveguide resonance to realize outstanding antireflection proprieties. The SCS was prepared on a 3 cm × 3 cm silicon wafer by ICP etching and magnetron sputtering, and the measured results matched well with the simulation results. Further, such antireflection concept can be applied to other materials for particular ultra-broadband spectrum regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. L. Yang, Y. Xuan, J. Quant. Spectrosc. Radiat. Transf. 151, 5–12 (2015)

    Article  ADS  Google Scholar 

  2. Y. Liu, W. Zi, S.F. Liu, B. Yan, Sol. Energy Mater. Sol. Cell 140, 180–186 (2015)

    Article  Google Scholar 

  3. J.B. Kim, C.I. Yeo, Y.H. Lee, S. Ravindran, Y.T. Lee, Nanoscale Res. Lett. 9, 54 (2014)

    Article  ADS  Google Scholar 

  4. S. Chhajed, M.F. Schubert, J.K. Kim, E.F. Schubert, Appl. Phys. Lett. 93, 251108 (2008)

    Article  ADS  Google Scholar 

  5. X.H. Li, P.C. Li, D.Z. Hu, D.M. Schaadt, E.T. Yu, J. Appl. Phys. 114, 44310 (2013)

    Article  Google Scholar 

  6. K.M.A. Sobahan, Y.J. Park, J.J. Kim, C.K. Hwangbo, Opt. Commun. 284, 873–876 (2011)

    Article  ADS  Google Scholar 

  7. S. Tsai, H. Chang, H. Wang, S. Chen, C. Lin, S. Chen, Y. Chueh, J. He, ACS Nano 5, 9501–9510 (2011)

    Article  Google Scholar 

  8. P. Kuang, M. Hsieh, S. Lin, J. Appl. Phys. 117, 215309 (2015)

    Article  ADS  Google Scholar 

  9. J.W. Leem, Y.M. Song, Y.T. Lee, J.S. Yu, Appl. Phys. B 99, 695–700 (2010)

    Article  ADS  Google Scholar 

  10. Q. Yang, X.A. Zhang, A. Bagal, W. Guo, C.H. Chang, Nanotechnology 24, 235202 (2013)

    Article  ADS  Google Scholar 

  11. B. Liu, S. Qiu, N. Chen, G. Du, J. Sun, Mater. Sci. Semicond. Process. 16, 1014–1021 (2013)

    Article  Google Scholar 

  12. M.H. Elshorbagy, K. Abdel-Hady, H. Kamal, J. Alda, Opt. Commun. 390, 130–136 (2017)

    Article  ADS  Google Scholar 

  13. U. Sikder, M.A. Zaman, Opt. Laser Technol. 79, 88–94 (2016)

    Article  ADS  Google Scholar 

  14. B. Dudem, J.W. Leem, M. Choi, J.S. Yu, Appl. Phys. B 118, 439–447 (2015)

    Article  ADS  Google Scholar 

  15. R. Singh, M. Kumar, M. Saini, A. Singh, B. Satpati, T. Som, Appl. Surf. Sci. 418, 225–231 (2017)

    Article  ADS  Google Scholar 

  16. S. Sali, M. Boumaour, M. Kechouane, S. Kermadi, F. Aitamar, Phys. B 407, 2626–2631 (2012)

    Article  ADS  Google Scholar 

  17. S.K. Sardana, V.S.N. Chava, V.K. Komarala, Appl. Surf. Sci. 347, 651–656 (2015)

    Article  ADS  Google Scholar 

  18. P. Kuang, S. Eyderman, M. Hsieh, A. Post, S. John, S. Lin, ACS Nano 10, 6116–6124 (2016)

    Article  Google Scholar 

  19. P. Karadan, A.A. Anappara, V.H.S. Moorthy, C. Narayana, H.C. Barshilia, RSC Adv 6, 109157–109167 (2016)

    Article  Google Scholar 

  20. B.D. Park, J.W. Leem, J.S. Yu, Appl. Phys. B 105, 335–342 (2011)

    Article  ADS  Google Scholar 

  21. E. Garnett, P. Yang, Nano Lett. 10, 1082–1087 (2010)

    Article  ADS  Google Scholar 

  22. K. Park, H.J. Choi, C. Chang, R.E. Cohen, G.H. McKinley, G. Barbastathis, ACS Nano 6, 3789–3799 (2012)

    Article  Google Scholar 

  23. D.A. Zuev, O.A. Novodvorsky, E.V. Khaydukov, O.D. Khramova, A.A. Lotin, L.S. Parshina, V.V. Rocheva, V.Y. Panchenko, V.V. Dvorkin, A.Y. Poroykov, G.G. Untila, A.B. Chebotareva, T.N. Kost, M.A. Timofeyev, Appl. Phys. B 105, 545–550 (2011)

    Article  ADS  Google Scholar 

  24. J.W. Leem, Y.M. Song, Y.T. Lee, J.S. Yu, Appl. Phys. B 100, 891–896 (2010)

    Article  ADS  Google Scholar 

  25. Web site for NREL’s AM1.5 Standard Dataset. http://rredc.nrel.gov/solar/spectra/am1.5. Accessed 19 Jun 2017

  26. D. Kraemer, L. Hu, A. Muto, X. Chen, G. Chen, M. Chiesa, Appl. Phys. Lett. 92, 243503 (2008)

    Article  ADS  Google Scholar 

  27. E.A. Chávez-Urbiola, Y.V. Vorobiev, L.P. Bulat, Sol. Energy 86, 369–378 (2012)

    Article  ADS  Google Scholar 

  28. M.L. Kuo, D.J. Poxson, Y.S. Kim, F.W. Mont, J.K. Kim, E.F. Schubert, S.Y. Lin, Opt. Lett. 33, 2527–2529 (2008)

    Article  ADS  Google Scholar 

  29. J.W. Leem, Y.M. Song, J.S. Yu, Appl. Phys. B 107, 409–414 (2012)

    Article  ADS  Google Scholar 

  30. Y. Zhang, Y. Xuan, Sol. Energy Mater. Sol. C 144, 68–77 (2016)

    Article  Google Scholar 

  31. Y. Xu, Y. Xuan, L. Yang, Energy Convers. Manage. 103, 533–541 (2015)

    Article  Google Scholar 

  32. S.A. Boden, D.M. Bagnall, Appl. Phys. Lett. 93, 133108 (2008)

    Article  ADS  Google Scholar 

  33. P. Spinelli, M.A. Verschuuren, A. Polman, Nat. Commun. 3, 692 (2012)

    Article  ADS  Google Scholar 

  34. H.A. Macleod, Thin-Film Optical Filters (Adam Hilger Ltd, Bristol, 1986)

    Book  Google Scholar 

  35. E.D. Palik, Handbook of Optical Constants of Solids. J. Mod. Opt. 33, 189 (1985)

    Google Scholar 

  36. J. Berenger, J. Comput. Phys. 127, 363–379 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  37. X. Meng, E. Drouard, G. Gomard, R. Peretti, A. Fave, C. Seassal, Opt. Express 20(Suppl 5), A560–A571 (2012)

    Article  ADS  Google Scholar 

  38. G. Grzela (ed.), Directional Light Emission and Absorption by Semiconductor Nanowires (Eindhoven University of Technology, Netherland, 2013)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51590901 and 51336003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimin Xuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, L., Xuan, Y. Realization of omnidirectional ultra-broadband antireflection properties via subwavelength composite structures. Appl. Phys. B 123, 263 (2017). https://doi.org/10.1007/s00340-017-6843-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6843-3

Navigation