Skip to main content
Log in

Generation of a sub-half-wavelength focal spot with purely transverse spin angular momentum

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We theoretically demonstrate that optical focus fields with purely transverse spin angular momentum (SAM) can be obtained when a kind of special incident fields is focused by a high numerical aperture (NA) aplanatic lens (AL). When the incident pupil fields are refracted by an AL, two transverse Cartesian components of the electric fields at the exit pupil plane do not have the same order of sinusoidal or cosinoidal components, resulting in zero longitudinal SAMs of the focal fields. An incident field satisfying above conditions is then proposed. Using the Richard–Wolf vectorial diffraction theory, the energy density and SAM density distributions of the tightly focused beam are calculated and the results clearly validate the proposed theory. In addition, a sub-half-wavelength focal spot with purely transverse SAM can be achieved and a flattop energy density distribution parallel to z-axis can be observed around the maximum energy density point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Neugebauer, T. Bauer, A. Aiello, P. Banzer, Phys. Rev. Lett. 114, 063901 (2015)

    Article  ADS  Google Scholar 

  2. A.Y. Bekshaev, K.Y. Bliokh, F. Nori, Phys. Rev. X 5, 011039 (2015)

    Google Scholar 

  3. M.H. Alizadeh, B.M. Reinhard, Opt. Express 24, 8471 (2016)

    Article  ADS  Google Scholar 

  4. S. Saha, A.K. Singh, S.K. Ray, A. Banerjee, S.D. Gupta, N. Ghosh, Opt. Lett. 41, 4499 (2016)

    Article  ADS  Google Scholar 

  5. W. Zhu, V. Shvedov, W. She, W. Krolikowski, Opt. Express 23, 34029 (2015)

    Article  ADS  Google Scholar 

  6. P. Banzer, M. Neugebauer, A. Aiello, C. Marquardt, N. Lindlein, T. Bauer, G. Leuchs, J. Eur. Opt. Soc. Rapid 8, 13032 (2013)

    Article  Google Scholar 

  7. J. Chen, C. Wan, L. Kong, Q. Zhan, Opt. Express 25, 8966 (2017)

    Article  ADS  Google Scholar 

  8. O.G. Rodríguez-Herrera, D. Lara, K.Y. Bliokh, E.A. Ostrovskaya, C. Dainty, Phys. Rev. Lett. 104, 253601 (2010)

    Article  ADS  Google Scholar 

  9. A. Aiello, P. Banzer, M. Neugebauer, G. Leuchs, Nat. Photonics 9, 789 (2015)

    Article  ADS  Google Scholar 

  10. Y. Zhao, J.S. Edgar, G.D.M. Jeffries, D. McGloin, D.T. Chiu, Phys. Rev. Lett. 99, 073901 (2007)

    Article  ADS  Google Scholar 

  11. C. Kuang, X. Hao, X. Liu, T. Wang, Y. Ku, Opt. Commun. 284, 1766 (2011)

    Article  ADS  Google Scholar 

  12. H. Wang, L. Shi, B. Luƙyanchuk, C. Sheppard, C.T. Chong, Nat. Photonics 2, 501 (2008)

    Article  Google Scholar 

  13. W. Han, W. Cheng, Q. Zhan, Appl. Opt. 54, 2275 (2015)

    Article  ADS  Google Scholar 

  14. W. Han, Y. Yang, W. Cheng, Q. Zhan, Opt. Express 21, 20692 (2013)

    Article  ADS  Google Scholar 

  15. B. Richards, E. Wolf, Proc. R. Soc. Lond. A Math. Phys. Sci. 253, 358 (1959)

    Article  ADS  Google Scholar 

  16. D.B. Ruffner, D.G. Grier, Phys. Rev. Lett. 111, 059301 (2013)

    Article  ADS  Google Scholar 

  17. A. Aiello, P. Banzer, J. Opt. 18, 085605 (2016)

    Article  ADS  Google Scholar 

  18. A. Aiello, P. Banzer, arXiv:1502.05350 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peifeng Chen.

Appendix

Appendix

  1. 1.

    Detailed expression of det (\(A|\overrightarrow {{E_{o} }} (\theta ,\varphi )\)) = 0:

    $$\left\{ \begin{aligned} \varPhi_{1,2a} = \varPsi_{2,2b} = \varPhi_{3,2c + 1} (\forall a,b,c \in N) \hfill \\ \varPhi_{1,2a + 1} = \varPsi_{2,2b + 1} = \varPhi_{3,2c} (\forall a,b,c \in N) \hfill \\ \varPsi_{1,2a} = \varPhi_{2,2b} = \varPsi_{3,2c + 1} (\forall a,b,c \in N) \hfill \\ \varPsi_{1,2a + 1} = \varPhi_{2,2b + 1} = \varPsi_{3,2c} (\forall a,b,c \in N) \hfill \\ \sin \theta (f_{11} + g_{21} ) = 2\cos \theta f_{30} \hfill \\ \sin \theta (2f_{10} + f_{12} + g_{22} ) = 2\cos \theta f_{31} \hfill \\ \sin \theta (g_{12} + 2f_{20} - f_{22} ) = 2\cos \theta g_{31} \hfill \\ for\;n = 2,3,4 \cdots \hfill \\ \sin \theta (f_{1,n - 1} + f_{1,n + 1} - g_{2,n - 1} + g_{2,n + 1} ) = 2\cos \theta f_{3,n} \hfill \\ \sin \theta (g_{1,n - 1} + g_{1,n + 1} + f_{2,n - 1} - f_{2,n + 1} ) = 2\cos \theta g_{3,n} \hfill \\ \end{aligned} \right..$$
    (A1)
  2. 2.

    Electric field and SAM density corresponding to \(\vec{E}_{i} (\theta ,\varphi )\) in Eq. (12):

$$\begin{aligned} E_{x} (r,\phi ,z) &= - ik\int_{0}^{{\theta_{\hbox{max} } }} {(\cos \phi J_{1} + \cos 2\phi J_{2} )} \hfill \\ &\quad \times\sin \theta \cos \theta \exp (ikz\cos \theta ){\text{d}}\theta , \hfill \\ \end{aligned}$$
(A2)
$$\begin{aligned} E_{y} (r,\phi ,z) &= - ik\int_{0}^{{\theta_{\hbox{max} } }} {(\sin \phi J_{1} + \sin 2\phi J_{2} )} \hfill \\ &\quad\times \sin \theta \cos \theta \exp (ikz\cos \theta ){\text{d}}\theta , \hfill \\ \end{aligned}$$
(A3)
$$\begin{aligned} E_{z} (r,\phi ,z) &= - k\int_{0}^{{\theta_{\hbox{max} } }} {(J_{0} + \cos \phi J_{1} )} \hfill \\ &\quad\times \sin^{2} \theta \exp (ikz\cos \theta ){\text{d}}\theta , \hfill \\ \end{aligned}$$
(A4)
$$\begin{aligned} &s_{x} \propto \int_{0}^{{\theta_{\hbox{max} } }} {\int_{0}^{{\theta_{\hbox{max} } }} {\sin \theta \cos \theta \sin^{2} \theta^{'} (\sin \phi J_{1} + \sin 2\phi J_{2} )} } \hfill \\ &\quad \times (J_{0}^{'} + \cos \phi J_{1}^{'} )\cos [kz(\cos \theta^{'} - \cos \theta )]{\text{d}}\theta^{'} {\text{d}}\theta , \hfill \\ \end{aligned}$$
(A5)
$$\begin{aligned} s_{y} \propto \int_{0}^{{\theta_{\hbox{max} } }} {\int_{0}^{{\theta_{\hbox{max} } }} {\sin^{2} \theta \sin \theta^{'} \cos \theta^{'} (J_{0} + \cos \phi J_{1} )} } \hfill \\ \times\;\;\;(\cos \phi J_{1}^{'} + \cos 2\phi J_{2}^{'} )\cos [kz(\cos \theta^{'} - \cos \theta )]{\text{d}}\theta^{'} {\text{d}}\theta , \hfill \\ \end{aligned}$$
(A6)
$$\begin{aligned} &s_{z} \propto \int_{0}^{{\theta_{\hbox{max} } }} {\int_{0}^{{\theta_{\hbox{max} } }} {\sin \theta \cos \theta \sin \theta^{'} \cos \theta^{'} (\cos \phi J_{1} + \cos 2\phi J_{2} )} } \hfill \\ &\times\, (\sin \phi J_{1}^{'} + \sin 2\phi J_{2}^{'} )\sin [kz(\cos \theta^{'} - \cos \theta )]{\text{d}}\theta^{'} {\text{d}}\theta . \hfill \\ \end{aligned}$$
(A7)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hang, L., Fu, J., Yu, X. et al. Generation of a sub-half-wavelength focal spot with purely transverse spin angular momentum. Appl. Phys. B 123, 266 (2017). https://doi.org/10.1007/s00340-017-6841-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6841-5

Navigation