Skip to main content
Log in

Fluorescence and absorption characteristics of p-xylene: applicability for temperature measurements

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

This paper explores the characteristics of absorption and fluorescence spectra of p-xylene within the temperature range that is frequently encountered during the mixture formation in internal combustion engines. At 266 nm wavelength, the p-xylene absorption cross section shows a mean value of (3.4 ± 0.2) × 10−19 cm2/molecule within the temperature range from 423 to 623 K in N2. As expected, fluorescence peak intensity decreases by a factor of 3 when the temperature increases by 100 K, due to a increasing non-radiative decay rate of excited state at increasing temperatures. In addition, the suitability of p-xylene for temperature measurements in the gas phase via the single-wavelength excitation (at 266 nm) two-color detection laser-induced fluorescence imaging is explored. Combinations of spectral detection bands were compared and the combination of 320/289 nm provides the best temperature performance with a relative error of 2.6% within the investigated temperature range. It is also shown that the temperature field measurement has not been strongly affected by the laser attenuation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Oh, C. Bae, Fuel 107, 225–235 (2013)

    Article  Google Scholar 

  2. J. Serras-Pereira, P.G. Aleiferis, D. Richardson, Combust. Sci. Technol. 185, 484–513 (2013)

    Article  Google Scholar 

  3. L.A. Melton, Appl. Opt. 22, 2224–2226 (1983)

    Article  ADS  Google Scholar 

  4. A.M. Murray, L.A. Melton, Appl. Opt. 24, 2783–2787 (1985)

    Article  ADS  Google Scholar 

  5. P. Wieske, S. Wissel, G. Grunefeld, S. Pischinger, Appl. Phys. B 83, 323–329 (2006)

    Article  ADS  Google Scholar 

  6. T.D. Fansler, M.C. Drake, Meas. Sci. Technol. 20, 125401 (2009)

    Article  ADS  Google Scholar 

  7. A.P. Froba, F. Rabenstein, K.U. Munch, A. Leipertz, Combust. Flame 112, 199–209 (1998)

    Article  Google Scholar 

  8. H. Chen, M. Xu, G. Zhang, M. Zhang, Y. Zhang, A.S.M.E. Conf. Proc. 49446, 391–403 (2010)

    Google Scholar 

  9. M.C. Thurber, R.K. Hanson, Appl. Phys. B 69, 299 (1999)

    Article  Google Scholar 

  10. W. Koban, J. Koch, R. Hanson, C. Schulz, Phys. Chem. Chem. Phys. 6, 2940 (2004)

    Article  Google Scholar 

  11. J.D. Koch, J. Gronki, R.K. Hanson, J. Quant. Spectrosc. Radiat. Transf. 109, 2037 (2008)

    Article  ADS  Google Scholar 

  12. J.D. Koch, R.K. Hanson, Appl. Phys. B 76, 319 (2003)

    Article  ADS  Google Scholar 

  13. S. Einecke, C. Schulz, V. Sick, Appl. Phys. B 71, 717–723 (2000)

    Article  ADS  Google Scholar 

  14. L. Zigan, J. Trost, A. Leipertz, MTZ Worldwide 75, 50–55 (2014)

    Article  Google Scholar 

  15. B.H. Cheung, R.K. Hanson, Appl. Phys. B 98, 518 (2010)

    Article  Google Scholar 

  16. M. Cundy, P. Trunk, A. Dreizler, V. Sick, Exp. Fluids 51, 1169 (2011)

    Article  Google Scholar 

  17. J. Yoo, D. Mitchell, D.F. Davidson, R.K. Hanson, Exp. Fluids 49, 751 (2010)

    Article  Google Scholar 

  18. S. Faust, T. Dreier, C. Schulz, Chem. Phys. 383, 6 (2011)

    Article  ADS  Google Scholar 

  19. M. Orain, P. Baranger, B. Rossow, F. Grisch, Appl. Phys. B 100, 945–952 (2010)

    Article  ADS  Google Scholar 

  20. S. Faust, G. Tea, T. Dreier, C. Schulz, Appl. Phys. B 110, 81 (2013)

    Article  ADS  Google Scholar 

  21. S. Kaiser, M. Long, Proc. Combust. Inst. 30, 1555 (2005)

    Article  Google Scholar 

  22. M. Orain, P. Baranger, B. Rossow, F. Grisch, Appl. Phys. B 102, 163–172 (2011)

    Article  ADS  Google Scholar 

  23. R. Zhang, V. Sick, SAE Technical Paper 2007-01-1826, (2007)

  24. B. Williams, P. Ewart, X. Wang, R. Stone, H. Ma, H. Walmsley, R. Cracknell, R. Stevens, D. Richardson, H. Fu, S. Wallace, Combust. Flame 157, 1866–1879 (2010)

    Article  Google Scholar 

  25. G. Tea, G. Bruneaux, J.T. Kashdan, C. Schulz, Proc. Combust. Inst. 33, 783–790 (2011)

    Article  Google Scholar 

  26. S. Lind, U. Retzer, S. Will, L. Zigan, Proc. Combust. Inst. 36, 4497–4504 (2017)

    Article  Google Scholar 

  27. K.H. Tran, C. Miron, M. Kühni, P. Guibert, Appl. Phys. B 115, 461–470 (2014)

    Article  ADS  Google Scholar 

  28. S. Faust, T. Dreier, C. Schulz, Appl. Phys. B 112, 203 (2013)

    Article  ADS  Google Scholar 

  29. Q. Wang, K.H. Tran, C. Morin, J. Bonnety, G. Legros, P. Guibert, Appl. Phys. B 123, 199 (2017)

    Article  ADS  Google Scholar 

  30. M. Kühni, C. Morin, P. Guibert, Appl. Phys. B 102, 659–671 (2011)

    Article  ADS  Google Scholar 

  31. K. K. David, J. S. Klaus, Spring GWMR, 135–145 (1990)

  32. Y. Zhang, K. Nishida, Combust. Sci. Technol. 179, 863–881 (2007)

    Article  Google Scholar 

  33. A.G. Osborn, D.R. Douslin, J. Chem. Eng. Data 19, 114–117 (1974)

    Article  Google Scholar 

  34. M. Michou-Saucet, J. Jose, Thermochim. Acta 75, 85–106 (1984)

    Article  Google Scholar 

  35. L. Zigan, I. Schmitz, Fuel 90, 348–363 (2011)

    Article  Google Scholar 

  36. I.S. Zaslonko, Rus. Chem. Rev. 6, 483–507 (1997)

    Article  Google Scholar 

  37. B. Rossow, Ph.D. Thesis, Universite of Paris-sud 11, 191 (2011)

  38. A. Bolovins, J. Philis, E. Pantos, G. Andritsopoulos, J. Mol. Spectrosc. 94, 55–68 (1982)

    Article  ADS  Google Scholar 

  39. R. Matsumoto, K. Sakeda, Y. Matsushita, T. Suzuki, T. Ichimura, J. Mol. Struct. 735–736, 153–167 (2005)

    Article  Google Scholar 

  40. D. Fuhrmann, T. Benzler, S. Fernando, T. Endres, T. Dreier, S.A. Kaiser, Proc. Combust. Inst. 36, 4505–4514 (2017)

    Article  Google Scholar 

  41. M. Luong, W. Koban, C. Schulz, J. Phys. 45, 133–139 (2006)

    Google Scholar 

  42. W. Koban, J. Koch, R. Hanson, C. Schulz, Appl. Phys. B 80, 777–784 (2005)

    Article  ADS  Google Scholar 

  43. M. Luong, R. Zhang, C. Schulz, V. Scik, Appl. Phys. B 91, 669–675 (2008)

    Article  ADS  Google Scholar 

  44. D.A. Rothamer, J.A. Snyder, R.K. Hanson, R.R. Steeper, Appl. Phys. B 99, 371–384 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The present study has been supported by the China Postdoctoral Science Foundation (No. 2016M591672), Innovation Program of Shanghai Municipal Education Commission (No. 14ZZ022) and Science and Technology Project of Guangdong Province (No. 2016A040403095). Key Laboratory of Hypersonic Ramjet Technology of China (No. STS/MY-KFKT-2014001). The authors feel grateful to Wenyuan Qi, Qingzhe Zhou and engineer of Yuanming Ma for their contributions to the establishment of the experimental setup.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuyin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Zhang, Y., Jiang, L. et al. Fluorescence and absorption characteristics of p-xylene: applicability for temperature measurements. Appl. Phys. B 123, 242 (2017). https://doi.org/10.1007/s00340-017-6817-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6817-5

Navigation