Skip to main content
Log in

Spectral characteristics of multi-line Q-switched CO laser radiation frequency converted in ZnGeP2

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Lasing on different spectral lines belonging to a giant pulse of multi-line Q-switched CO laser was experimentally studied. The Q-switched CO laser emitted a giant microsecond pulse that consisted of about one hundred subpulses corresponding to different rotational–vibrational transitions. Amplitude, time delay and duration were measured for such a laser subpulse, and processes affecting formation of the CO laser giant pulse spectrum were analyzed. These data were taken into account to correctly estimate peak power and the number of spectral lines of radiation formed under sum frequency conversion of the CO laser radiation in nonlinear ZnGeP2 crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.A. Ionin, Electric discharge CO laser, in Gas Lasers, ed. by M. Endo, R. Walter (CRC Press, Boca Raton, 2007), pp. 201–238

    Google Scholar 

  2. A.A. Ionin, I.O. Kinyaevskiy, YuM Klimachev et al., Frequency tunable CO laser operating on the highest vibrational transition with wavelength of 8.7 micron. Opt. Lett. 42, 498–501 (2017)

    Article  ADS  Google Scholar 

  3. A.A. Ionin, A.K. Kurnosov, A.P. Napartovich, L.V. Seleznev, Lasers on overtone transitions of carbon monoxide molecule. Laser Phys. 20, 144–186 (2010)

    Article  ADS  Google Scholar 

  4. A.A. Ionin, YuM Klimachev, AYu. Kozlov et al., A pulsed overtone CO laser with efficiency of 16%. Quantum Electron. 36, 1153–1154 (2006)

    Article  ADS  Google Scholar 

  5. P. Mineev, S.M. Nefedov, P.P. Pashinin et al., Radio frequency excited planar CO2 and CO lasers, in Proceedings SPIE 7994, 799402 (2011)

  6. J. Wallace, Gas lasers: carbon monoxide laser aims at high-power applications. Laser Focus World 51, 28 (2015)

    Google Scholar 

  7. P. Mineev, S.M. Nefedov, P.P. Pashinin et al., Optimization of the parameters of gas-discharge active medium and optical resonator of RF excited planar co-laser at room temperature. 2016 International Conference Laser Optics (LO), IEEE Conference Paper, p. R2-13 (2016)

  8. A.A. Ionin, AYu. Kozlov, O.A. Rulev et al., Repetitively pulsed cryogenically cooled quasi-sealed-off slab RF discharge first-overtone CO laser. Appl. Phys. B 122, 183 (2016)

    Article  ADS  Google Scholar 

  9. A.A. Ionin, YuV Kochetkov, AYu. Kozlov et al., Q-switched slab RF discharge CO laser. Laser Phys. Lett. 14, 055001 (2017)

    Article  ADS  Google Scholar 

  10. J. Puerta, W. Herrmann, G. Bourauel, W. Urban, Extended spectral distribution of lasing transitions in a liquid-nitrogen cooled CO-laser. Appl. Phys. 19, 439 (1979)

    Article  ADS  Google Scholar 

  11. Y.M. Andreev, S.N. Bovdey, P.P. Geyko et al., Multifrequency laser source in the 2.6–3.2 µm range. Opt. Atmos. 1, 124–127 (1988). (in Russian)

    Google Scholar 

  12. A.A. Ionin, I.O. Kinyaevskiy, YuM Klimachev et al., Collinear cascaded mid-infrared frequency conversion in one nonlinear optical crystal. Opt. Lett. 37, 2838 (2012)

    Article  ADS  Google Scholar 

  13. YuM Andreev, A.A. Ionin, I.O. Kinyaevskiy et al., Broadband carbon monoxide laser system operating in the wavelength range of 2.5–8.3 μm. Quantum Electron. 43, 139 (2013)

    Article  ADS  Google Scholar 

  14. A.A. Ionin, I.O. Kinyaevskiy, YuM Klimachev et al., Influence of multi-line CO laser focusing on broadband sum frequency generation. Laser Phys. Lett. 14, 065401 (2017)

    Article  ADS  Google Scholar 

  15. O.V. Budilova, A.A. Ionin, I.O. Kinyaevskiy et al., Broadband two-stage frequency conversion of CO laser in AgGaSe2 crystal. Opt. Lett. 41, 777–780 (2016)

    Article  ADS  Google Scholar 

  16. Ph Kupecek, E. Batifol, Conversion de frequencies optiques dans le seleniure de gallium (GaSe). Opt. Commun. 11, 291–295 (1974)

    Article  ADS  Google Scholar 

  17. H. Kildal, J.C. Mikkelsen, Efficient doubling and CW difference frequency mixing in the infrared using the chalcopyrite CdGeAs2. Opt. Commun. 10, 306–309 (1974)

    Article  ADS  Google Scholar 

  18. H. Kildal, J.C. Mikkelsen, The nonlinear optical coefficient, phase matching and optical damage in the chalcopyrite AgGaSe2. Opt. Commun. 9, 315–318 (1973)

    Article  ADS  Google Scholar 

  19. YuM Andreev, O.V. Budilova, A.A. Ionin et al., Frequency conversion of mode-locked and Q-switched CO laser radiation with efficiency up to 37%. Opt. Lett. 40, 2997–3000 (2015)

    Article  ADS  Google Scholar 

  20. A.G. Basiev, A.A. Golubev, V.A. Gurashvili, S.V. Iziumov, Spectral broadening of Q-switched CO laser generation. Soviet Phys. Tech. Phys. 25, 1016–1018 (1980)

    ADS  Google Scholar 

  21. A.G. Basiev, V.E. Galtsev, V.A. Gurashvili et al., Features of the spectrum formation of Q-switched CO laser. Preprint of Institute of Atomic Energy 3448/12 (1981) (in Russian)

  22. A.A. Ionin, I.O. Kinyaevskiy, YuM Klimachev et al., Frequency conversion of molecular gas lasers in PbIn6Te10 crystal within mid-IR range. Opt. Lett. 41, 2390–2393 (2016)

    Article  ADS  Google Scholar 

  23. O.V. Budilova, A.A. Ionin, I.O. Kinyaevskiy et al., Ultra-broadband hybrid infrared laser system. Opt. Commun. 363, 26–30 (2016)

    Article  ADS  Google Scholar 

  24. P. Brechignac, Transfer of rotational population in CO by IR laser double resonance. Opt. Commun. 25, 53 (1978)

    Article  ADS  Google Scholar 

  25. A.A. Ionin, YuM Klimachev, YuB Konev et al., Theoretical modelling and experimental studies of the multi-quantum vibration exchange in vibrationally excited CO molecules. J. Phys. D Appl. Phys. 34, 2230–2236 (2001)

    Article  ADS  Google Scholar 

  26. S. Vetoshkin, A. Ionin, Yu. Klimachev et al., Multiline laser probing for active media CO:He, CO:N2, and CO:O2 in wide-aperture pulsed amplifier. J. Russ. Laser Res. 27, 33–69 (2006)

    Article  Google Scholar 

  27. W. Urban, Physics and spectroscopic applications of carbon monoxide lasers, a review. Infrared Phys. Technol. 36, 465–473 (1995)

    Article  ADS  Google Scholar 

  28. D.N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, New York, 2005)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Russian Science Foundation (Project no. 16-19-10619).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. O. Kinyaevskiy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ionin, A.A., Kinyaevskiy, I.O., Klimachev, Y.M. et al. Spectral characteristics of multi-line Q-switched CO laser radiation frequency converted in ZnGeP2 . Appl. Phys. B 123, 234 (2017). https://doi.org/10.1007/s00340-017-6812-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6812-x

Navigation