Skip to main content
Log in

Acetone photophysics at 282 nm excitation at elevated pressure and temperature. II: Fluorescence modeling

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

This is the second in a series of two papers that presents an updated fluorescence model and compares with the new experimental data reported in the first paper, as well as the available literature data, to extend the range of acetone photophysics to elevated pressure and temperature conditions. This work elucidates the complete acetone photophysical model in terms of each and every competing radiative and non-radiative rate. The acetone fluorescence model is then thoroughly examined and optimized based on disparity with recently conducted elevated pressure and temperature photophysical calibration experiments. The current work offers insight into the competition between non-radiative and vibrational energy decay rates at elevated temperature and pressure and proposes a global optimization of model parameters from the photophysical model developed by Thurber (Acetone Laser-Induced Fluorescence for Temperature and Multiparameter Imaging in Gaseous Flows. PhD thesis, Stanford University Mechanical Engineering Department, 1999). The collisional constants of proportionality, which govern vibrational relaxation, are shown to be temperature dependent at elevated pressures. A new oxygen quenching rate is proposed which takes into account collisions with oxygen as well as the oxygen-assisted intersystem crossing component. Additionally, global trends in ketone photophysics are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M.C. Thurber, Acetone laser-induced fluorescence for temperature and multiparameter imaging in gaseous flows. PhD thesis, Stanford University Mechanical Engineering Department, 1999

  2. A.C. Eckbreth, Laser diagnostics for combustion temperature and species, 2nd edn. (Gordon & Breach Publishers, Philadelphia, 1996)

    Google Scholar 

  3. F. Ossler, M. Alden, Appl. Phys. B 64, 493–502 (1997)

    Article  ADS  Google Scholar 

  4. F. Grossman, P.B. Monkhouse, M. Ridder, V. Sick, J. Wolfrum, Appl. Phys. B 62, 249–253 (1996)

    Article  ADS  Google Scholar 

  5. A. Braeuer, F. Beyrau, A. Leipertz, Appl. Opt. 45, 4982–4989 (2006)

    Article  ADS  Google Scholar 

  6. M. Loffler, F. Beyrau, A. Leipertz, Appl. Opt. 49, 37–49 (2010)

    Article  ADS  Google Scholar 

  7. J.W. Hartwig, G. Mittal, K. Kumar, and C.J. Sung, Appl. Phys. B. 123, (2017). doi:10.1007/s00340-017-6774-z

  8. E.K.C. Lee, R.S. Lewis, Adv. Photochem. 12, 1–95 (1980)

    Article  Google Scholar 

  9. W.R. Ware, S.K. Lee, J. Chem. Phys. 49, 217–220 (1968)

    Article  ADS  Google Scholar 

  10. D.A. Hansen, E.K.C. Lee, J. Chem. Phys. 62, 183–189 (1975)

    Article  ADS  Google Scholar 

  11. C. Schulz, V. Sick, Prog. Energy Combust. Sci. 31, 75–121 (2005)

    Article  Google Scholar 

  12. M. Baba, I. Hanazaki, Chem. Phys. Lett. 103, 93–97 (1983)

    Article  ADS  Google Scholar 

  13. H. Zuckermann, Y. Haas, Chem. Phys. 163, 193–208 (1992)

    Article  ADS  Google Scholar 

  14. D.W. Liao, A.M. Mebel, M. Hayashi, Y.J. Shiu, Y.T. Chen, S.H. Lin, J. Chem. Phys. 111, 205–215 (1999)

    Article  ADS  Google Scholar 

  15. R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport phenomena, 2nd edn. (Wiley, Hoboken, 2007)

    Google Scholar 

  16. D.J. Wilson, B. Noble, B. Lee, J. Chem. Phys. 34, 1392–1396 (1960)

    Article  ADS  Google Scholar 

  17. M.J.G. Borge, J.M. Figuera, J. Luque, Study of the emission of the excited acetone vapour at intermediate pressures. Spectrochim. Acta 46A, 617–621 (1990)

    Article  ADS  Google Scholar 

  18. G.B. Porter, B.T. Connelly, Kinetics of excited molecules. II. Dissociation processes. J. Chem. Phys. 33, 81–85 (1960)

    Article  ADS  Google Scholar 

  19. J. Troe, J. Chem. Phys. 77, 3485–3492 (1982)

    Article  ADS  Google Scholar 

  20. H. Hippler, J. Troe, H.J. Wendelken, J. Chem. Phys. 78, 6709–6717 (1983)

    Article  ADS  Google Scholar 

  21. H. Hippler, J. Troe, H.J. Wendelken, J. Chem. Phys. 78, 6718–6723 (1983)

    Article  ADS  Google Scholar 

  22. I. Oref, D.C. Tardy, Chem. Rev. 90, 1407–1445 (1980)

    Article  Google Scholar 

  23. H. Hippler, B. Otto, J. Troe, Berichte der Bunsen-Gesellschaft für Physikalische Chemie 93, 428–434 (1989)

    Article  Google Scholar 

  24. G.H. Kohlmaier, B.S. Rabinovitch, J. Chem. Phys. 38, 1692–1708 (1963)

    Article  ADS  Google Scholar 

  25. M.J. Rossi, J.R. Pladziewicz, J.R. Barker, J. Chem. Phys. 78, 6695–6708 (1983)

    Article  ADS  Google Scholar 

  26. J. Troe, J. Phys. Chem. 87, 1800–1804 (1983)

    Article  Google Scholar 

  27. G.M. Breuer, E.K.C. Lee, J. Phys. Chem. 75, 989–990 (1971)

    Article  Google Scholar 

  28. R.G. Shortridge, C.F. Rusbult, E.K.C. Lee, J. Am. Chem. Soc. 93, 1863–1867 (1971)

    Article  Google Scholar 

  29. J.C. Hsieh, C.S. Huang, E.C. Lim, J. Chem. Phys. 60, 4345–4353 (1974)

    Article  ADS  Google Scholar 

  30. Y. Hirata, E.C. Lim, J. Chem. Phys. 69, 3292–3296 (1978)

    Article  ADS  Google Scholar 

  31. H.J. Groh, G.W. Luckey, W.A. Noyes, J. Chem. Phys. 21, 115–118 (1953)

    Article  ADS  Google Scholar 

  32. A.M. Halpern, W.R. Ware, J. Chem. Phys. 34, 1271–1276 (1971)

    Article  ADS  Google Scholar 

  33. R.A. Copeland, D.R. Crosley, Chem. Phys. Lett. 115, 362–368 (1985)

    Article  ADS  Google Scholar 

  34. J. Heicklen, Am. Chem. Soc. 81, 3863–3866 (1958)

    Article  Google Scholar 

  35. F. Ossler, M. Alden, Appl. Phys. B 64, 493–502 (1997)

    Article  ADS  Google Scholar 

  36. W.M. Nau, J.C. Scaiano, J. Phys. Chem. 100, 11360–11367 (1996)

    Article  Google Scholar 

  37. C. Grewer, C. Wirp, M. Neumann, H.D. Brauer, Berichte der Bunsen-Gesellschaft für Physikalische Chemie 98, 997–1003 (1994)

    Article  Google Scholar 

  38. R.G. Brown, D. Phillips, J. Chem. Soc. Faraday Trans. 2(70), 630–636 (1973)

    Google Scholar 

  39. J. Heicklen, W.A. Noyes, J. Am. Chem. Soc. 81, 3858–3863 (1958)

    Article  Google Scholar 

  40. L.S. Yuen, J.E. Peters, R.P. Lucht, Optics 36, 3271–3277 (1997)

    ADS  Google Scholar 

  41. M.C. Thurber, F. Grisch, B.J. Kirby, M. Votsmeier, R.K. Hanson, Appl. Opt. 37, 4963–4978 (1998)

    Article  ADS  Google Scholar 

  42. J.D. Koch, R.K. Hanson, W. Koban, C. Schulz, Appl. Opt. 43, 5901–5910 (2004)

    Article  ADS  Google Scholar 

  43. J.C. Hsieh, E.C. Lim, J. Chem. Phys. 61, 736–737 (1974)

    Article  ADS  Google Scholar 

  44. G.W. Robinson, R.P. Frosch, J. Chem. Phys. 38, 1187–1203 (1962)

    Article  ADS  Google Scholar 

  45. J.D. Koch, Fuel tracer photophysics for quantitative planar laser-induced fluorescence. PhD thesis, Stanford University, 2005

  46. T.C. Brown, J.A. Taylor, K.D. King, R.G. Gilbert, J. Phys. Chem. 87, 5214–5219 (1983)

    Article  Google Scholar 

  47. J.H. Kiefer, S. Santhanam, N.K. Srinivasan, R.S. Tranter, S.J. Klippenstein, M.A. Oehlschlaeger, Proc. Combust. Inst. 30, 1129–1135 (2005)

    Article  Google Scholar 

  48. L. Monchick, E.A. Mason, J. Chem. Phys. 35, 1676–1697 (1961)

    Article  ADS  Google Scholar 

  49. R.S. Brokaw, I&EC Process Des. Dev. 8, 240–253 (1969)

    Article  Google Scholar 

  50. V. Modica, C. Morin, P. Guibert, Appl. Phys. B 87, 193–204 (2007)

    Article  ADS  Google Scholar 

  51. M.C. Thurber, R.K. Hanson, Appl. Phys. B 69, 229–240 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Hartwig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartwig, J., Raju, M. & Sung, CJ. Acetone photophysics at 282 nm excitation at elevated pressure and temperature. II: Fluorescence modeling. Appl. Phys. B 123, 193 (2017). https://doi.org/10.1007/s00340-017-6770-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6770-3

Navigation