Skip to main content
Log in

Is the photonic crystal with a Dirac cone at its Г point a real zero-index material?

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A novel optical property of a conventional two-dimensional dielectric photonic crystal (PC) has been reported by establishing a Dirac cone at the Г point of its band structure: it manipulates waves as if it had zero refractive indices at the Dirac point frequency (Huang et al. in Nature Mater 10:582–586, 2011). However, this PC is not a real homogeneous material. What is the difference between it and a real zero-index material (ZIM) is a fundamental issue of physics itself and also crucial to their applications. In this paper, through investigating the dispersion relations and the transmission properties of this kind of PC, we found that under normal incidence, at the frequency of the Dirac point, this PC does behave like a ZIM material. However, under oblique incidence, nonzero transmittances are obtained even at large incident angles, which is quite different from the real ZIM. The physical reason of the transmission properties was also investigated. It was found that near the Г point, there is an additional flat dispersion surface which intersects with the Dirac cone at the Dirac point. It is this flat dispersion surface which supports the Dirac point energy to exist in this PC, resulting in the nonzero transmission under oblique incidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, P. Vincent, A metamaterial for directive emission. Phys. Rev. Lett. 89, 213902 (2002)

    Article  ADS  Google Scholar 

  2. M. Silveirinha, N. Engheta, Tunneling of electromagnetic energy through subwavelength channels and bends using ε -near-zero materials. Phys. Rev. Lett. 97, 157403 (2006)

    Article  ADS  Google Scholar 

  3. R. Liu, Q. Cheng, T. Hand, J.J. Mock, T.J. Cui, S.A. Cummer, D.R. Smith, Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies. Phys. Rev. Lett. 100, 23903 (2008)

    Article  ADS  Google Scholar 

  4. B. Edwards, A. Alù, M.E. Young, M. Silveirinha, N. Engheta, Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide. Phys. Rev. Lett. 100(3), 105 (2008)

    Article  Google Scholar 

  5. L.Y. Liu, C.G. Hu, Z.Y. Zhao, X.G. Luo, Multi-passband tunneling effect in multilayered epsilon-near-zero metamaterials. Opt. Express 17(14), 12183 (2009)

    Article  ADS  Google Scholar 

  6. A. Alù, N. Engheta, Dielectric sensing in ϵ-near-zero narrow waveguide channels. Phys. Rev. B 78, 045102 (2008)

    Article  ADS  Google Scholar 

  7. J. Li, L. Zhou, C.T. Chan, P. Sheng, Photonic band gap from a stack of positive and negative index materials. Phys. Rev. Lett. 90(8), 137–168 (2003)

    Article  Google Scholar 

  8. J. Bravo-Abad, M. Soljačić, Enabling single-mode behavior over large areas with photonic Dirac cones. Proc. Natl. Acad. Sci. U.S.A. 109(25), 9761–9765 (2012)

    Article  ADS  Google Scholar 

  9. J.M. Hao, W. Yan, M. Qiu, Super-reflection and cloaking based on zero index metamaterial. Appl. Phys. Lett. 96(10), 101109 (2009)

    Article  ADS  Google Scholar 

  10. T.R. Zhai, J.W. Shi, S.J. Chen, D.H. Liu, Electromagnetic shielding and energy concentration using zero-index metamaterials. Appl. Phys. Express 4(7), 532–542 (2011)

    Article  Google Scholar 

  11. T.R. Zhai, J.W. Shi, S.J. Chen, D.H. Liu, X.D. Zhang, Achieving laser ignition using zero index metamaterials. Opt. Lett. 36(14), 2689–2691 (2011)

    Article  ADS  Google Scholar 

  12. Y.S. Zhou, L.M. Zhao, S. Lan, H. Wang, An optical one-way device constructed with an epsilon-near-zero prism inserted in a metal slit. Europhys. Lett. 109(5), 755–758 (2015)

    Article  Google Scholar 

  13. Y. Fu, L. Xu, Z.H. Hang, H. Chen, Unidirectional transmission using array of zero-refractive-index metamaterials. Appl. Phys. Lett. 104(19), 193509 (2014)

    Article  ADS  Google Scholar 

  14. X. Huang, Y. Lai, Z.H. Hang, H. Zheng, C.T. Chan, Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nat. Mater. 10(8), 582–586 (2011)

    Article  ADS  Google Scholar 

  15. P. Moitra, Y. Yang, Z. Anderson, I.I. Kravchenko, D.P. Briggs, J. Valentine, Realization of an all-dielectric zero-index optical metamaterial. Nat. Photon. 7(10), 791–795 (2013)

    Article  ADS  Google Scholar 

  16. Y. Li, S. Kita, P. Muñoz, O. Reshef, D.I. Vulis, On-chip zero-index metamaterials. Nat. Photon. 9, 738–742 (2015)

    Article  ADS  Google Scholar 

  17. F. Liu, Y. Lai, X. Huang, C.T. Chan, Dirac cones at k = 0 in phononic crystals. Phys. Rev. B 84(22), 224113 (2011)

    Article  ADS  Google Scholar 

  18. C. T. Chan, Z. H. Hang, X. Huang. Dirac dispersion in two-dimensional photonic crystals. Adv. OptoElectron. 14, 313984 (2012)

    Google Scholar 

  19. K. Sakoda, Dirac cone in two- and three-dimensional metamaterials. Opt. Express 20, 3898–3917 (2012)

    Article  ADS  Google Scholar 

  20. K. Sakoda, Proof of the universality of mode symmetries in creating photonic Dirac cones. Opt. Express 20, 25181–25194 (2012)

    Article  ADS  Google Scholar 

  21. J. Mei, Y. Wu, C.T. Chan, Z.Q. Zhang, First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals. Phys. Rev. B 86(3), 999–1002 (2012)

    Article  Google Scholar 

  22. Z. G. Chen, X. Ni, Y. Wu, C. He, X. C. Sun, L. Y. Z. Heng. Accidental degeneracy of double Dirac cones in a phononic crystal. Sci. Rep. 4(4), 4613 (2014)

  23. Y. Wu, J.S. Li, Z.Q. Zhang, C.T. Chan, Effective medium theory for magnetodielectric composites: beyond the long-wavelength limit. Phys. Rev. B 74, 085111 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China with Grant Nos. 11504336, 11274233, 11404293 and the Funds for Central University Research Works with No. 265201430.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. Gao or Y. S. Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, H., Zhou, Y.S., Zheng, Z.Y. et al. Is the photonic crystal with a Dirac cone at its Г point a real zero-index material?. Appl. Phys. B 123, 165 (2017). https://doi.org/10.1007/s00340-017-6738-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6738-3

Keywords

Navigation