Skip to main content
Log in

Continuously tunable polarization-independent zeroth-order fiber comb filter based on polarization-diversity loop structure

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

By selecting some optimal wave retarder combination (WRC) groups, we propose and experimentally implement a continuously tunable polarization-independent zeroth-order fiber comb filter based on a polarization-diversity loop structure. The selected WRC groups contain a set of two quarter-wave retarders (QWRs), a set of a QWR and a half-wave retarder (HWR), and a set of an HWR and a QWR. The filter was formed using a polarization beam splitter (PBS), one of the three selected WRC groups, and high birefringence fiber (HBF). One end of HBF was butt-coupled to the PBS so that its slow axis should be oriented at 45° for the horizontal axis of the PBS, and the other end was connected to the WRC group. Three kinds of comb filters were fabricated with the three selected WRC groups. Through theoretical analysis on light polarization conditions for continuous spectral tuning and filter transmittances, eight special azimuth angle sets of two wave retarders, which gave the transmittance function eight different phase shifts of 0 to –7π/4 with a –π/4 step, were found for each WRC group. Theoretical prediction was verified by experimental demonstration. It was also confirmed that the filter could be continuously tuned by the appropriate control of wave retarders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H. Sun, J. Zhang, Z. Yang, L. Zhou, X. Qiao, M. Hu, Opt. Laser. Technol. 72, 65 (2015)

    Article  ADS  Google Scholar 

  2. S. Liu, F. Yan, F. Ting, L. Zhang, Z. Bai, W. Han, H. Zhou, IEEE Photon. Technol. Lett. 28, 864 (2016)

    Article  ADS  Google Scholar 

  3. S.-Y. Bian, M.-Q. Ren, L. Wei, Microwave Opt. Technol. Lett. 56, 1666 (2014)

    Article  Google Scholar 

  4. G. Zhu, Q. Wang, H. Chen, H. Dong, N.K. Dutta, IEEE J. Quantum Electron. 40, 721 (2004)

    Article  ADS  Google Scholar 

  5. G. Sun, D.S. Moon, A. Lin, W.T. Han, Y. Chung, Opt. Express 16, 3652 (2008)

    Article  ADS  Google Scholar 

  6. O. Pottiez, B. Ibarra-Escamilla, E.A. Kuzin, R. Grajales-Coutino, A. Gonzalez-Garcia, Opt. Laser Technol. 42, 403 (2010)

    Article  ADS  Google Scholar 

  7. R.M. Sova, C.S. Kim, J.U. Kang, IEEE Photon. Technol. Lett. 14, 287 (2002)

    Article  ADS  Google Scholar 

  8. Z.-C. Luo, A.-P. Luo, W.-C. Xu, H.-S. Yin, J.-R. Liu, Q. Ye, Z.-J. Fang, IEEE Photon. J. 2, 571 (2010)

    Article  Google Scholar 

  9. Y. Zhao, T.-T. Song, Z.-W. Huo, J. Lightwave Technol. 29, 3672 (2011)

    Article  ADS  Google Scholar 

  10. X. Liu, L. Zhan, S. Luo, Y. Wang, Q. Shen, J. Lightwave Technol. 29, 3319 (2011)

    Article  ADS  Google Scholar 

  11. A.-P. Luo, Z.-C. Luo, W.-C. Xu, H. Cui, Opt. Express 18, 6056 (2010)

    Article  ADS  Google Scholar 

  12. J.-J. Guo, Y. Yang, G.-D. Peng, Opt. Commun. 284, 5144 (2011)

    Article  ADS  Google Scholar 

  13. Z.-C. Luo, W.-J. Cao, A.-P. Luo, W.-C. Xu, J. Lightwave Technol. 30, 1857 (2012)

    Article  ADS  Google Scholar 

  14. Y.W. Lee, K.J. Han, J. Jung, B. Lee, IEEE Photon. Technol. Lett. 16, 2066 (2004)

    Article  ADS  Google Scholar 

  15. S. Roh, S. Chung, Y.W. Lee, I. Yoon, B. Lee, IEEE Photon. Technol. Lett. 18, 2302 (2006)

    Article  ADS  Google Scholar 

  16. I. Yoon, Y.W. Lee, J. Jung, B. Lee, J. Lightwave Technol. 24, 1805 (2006)

    Article  ADS  Google Scholar 

  17. T. Hasegawa, K. Inoue, K. Oda, IEEE Photon. Technol. Lett. 5, 947 (1993)

    Article  ADS  Google Scholar 

  18. T. Morioka, K. Mori, M. Saruwatari, Electron. Lett. 28, 1070 (1992)

    Article  Google Scholar 

  19. Y.W. Lee, K.J. Han, B. Lee, J. Jung, Opt. Express 11, 3359 (2003)

    Article  ADS  Google Scholar 

  20. X. Fang, R.O. Claus, Opt. Lett. 20, 2146 (1995)

    Article  ADS  Google Scholar 

  21. Z. Jia, M. Chen, S. Xie, Electron. Lett. 38, 1563 (2002)

    Article  Google Scholar 

  22. Y. Xu, X. Li, J. Yu, J. Opt. Commun. Netw. 8, 53 (2016)

    Article  ADS  Google Scholar 

  23. X. Cao, V. Anand, Y. Xiong, C. Qiao, IEEE J. Sel. Areas Commun. 21, 1081 (2003)

    Article  Google Scholar 

  24. L. Guo, X. Wang, J. Cao, W. Hou, L. Pang, J. Lightwave Technol. 28, 2856 (2010)

    Article  ADS  Google Scholar 

  25. X. Fang, H. Ji, C.T. Allen, K. Demarest, L. Pelz, IEEE Photon. Technol. Lett. 9, 458 (1997)

    Article  ADS  Google Scholar 

  26. R.C. Jones, J. Opt. Soc. Am. 31, 488 (1941)

    Article  ADS  Google Scholar 

  27. Y. Kim, Y.W. Lee, Opt. Commun. 301–302, 159 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from Marine Biotechnology Program (20150220) funded by the Ministry of Oceans and Fisheries, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wook Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, J., Lee, Y.W. Continuously tunable polarization-independent zeroth-order fiber comb filter based on polarization-diversity loop structure. Appl. Phys. B 123, 106 (2017). https://doi.org/10.1007/s00340-017-6697-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6697-8

Keywords

Navigation