Skip to main content
Log in

A mid-infrared absorption diagnostic for acetylene detection

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Acetylene is an important combustion intermediate and plays a critical role in soot formation. Accurate measurements of trace concentrations of acetylene can be very useful in validating hydrocarbon oxidation and soot formation mechanisms. Strongest vibrational band of acetylene near 13.7 μm is probed here to develop a highly sensitive absorption diagnostic. Experiments are carried out behind reflected shock waves to measure absorption cross sections of acetylene near 730 cm−1 over a wide range of temperatures (1000–2200 K) and pressures (1–5 bar). The diagnostic is demonstrated by measuring acetylene formation during the shock-heated pyrolysis and oxidation of propene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. B. Atkana, A.T. Hartlieb, J. Brand, K. Kohse-Höinghaus, Symp. Int. Combust. 27, 435 (1998)

    Article  Google Scholar 

  2. N. Chai, S.V. Naik, W.D. Kulatilaka, N.M. Laurendeau, R.P. Lucht, S. Roy, J.R. Gord, Appl. Phys. B 87, 731 (2007)

    Article  ADS  Google Scholar 

  3. R. Lucht, R.L. Farrow, R.E. Palmer, Combust. Sci. Technol. 45, 261 (1986)

    Article  Google Scholar 

  4. A.V. Mokhov, S. Gersen, H.B. Levinsky, Chem. Phys. Lett. 403, 233 (2005)

    Article  ADS  Google Scholar 

  5. B.A. Williams, J.W. Fleming, Appl. Phys. B 75, 883 (2002)

    Article  ADS  Google Scholar 

  6. Z.W. Sun, Z.S. Li, B. Li, Z.T. Alwahabi, M. Aldén, Appl. Phys. B Laser Opt. 101, 423 (2010)

    Article  ADS  Google Scholar 

  7. S. Wagner, B.T. Fisher, J.W. Fleming, V. Ebert, Proc. Combust. Inst. 32, 839 (2009)

    Article  Google Scholar 

  8. S. Wagner, M. Klein, T. Kathrotia, U. Riedel, T. Kissel, A. Dreizler, V. Ebert, Appl. Phys. B 107, 585 (2012)

    Article  ADS  Google Scholar 

  9. J.J. Scherer, K.W. Aniolek, N.P. Cernansky, D.J. Rakestraw, J. Chem. Phys. 107, 6196 (1997)

    Article  ADS  Google Scholar 

  10. Z.R. Quine, K.L. McNesby, Appl. Opt. 48, 3075 (2009)

    Article  ADS  Google Scholar 

  11. I. Stranic, R.K. Hanson, J. Quant. Spectrosc. Radiat. Transf. 142, 58 (2014)

    Article  ADS  Google Scholar 

  12. L.S. Rothman et al., J. Quant. Spectrosc. Radiat. Transf. 130, 4 (2013)

    Article  ADS  Google Scholar 

  13. R. El Hachtouki, J.V. Auwera, J. Mol. Spectrosc. 216, 355 (2002)

    Article  ADS  Google Scholar 

  14. T. Shimanouchi, Tables of molecular vibrational frequencies consolidated. 1, 1 (1972)

  15. J. Vander Auwera, J. Mol. Spectrosc. 201, 143 (2000)

    Article  ADS  Google Scholar 

  16. J.J. Hillman, D.E. Jennings, G.W. Halsey, S. Nadler, W.E. Blass, J. Mol. Spectrosc. 146, 389 (1991)

    Article  ADS  Google Scholar 

  17. M.B. Sajid, T. Javed, A. Farooq, J. Quant. Spectrosc. Radiat. Transf. 155, 66 (2015)

    Article  Google Scholar 

  18. Reaction Design, CHEMKIN-PRO 15131, San Diego (2013). http://www.reactiondesign.com/support/help/help_usage_and_support/how-to-cite-products/

  19. H. Wang, X. You, A.V. Joshi, S.G. Davis, A. Laskin, F. Egolfopoulos, C.K. Law, USC Mech Version II. USC Mech High-temperature combustion reaction model of H2/CO/C1-C4 Compounds (2007). http://ignis.usc.edu/Mechanisms/USC-Mech%20II/USC_Mech%20II.htm

  20. S.W. Sharpe, R.L. Sams, T.J. Johnson, Applied imagery pattern recognition workshop proceedings 31, 45 (2002)

  21. V. Gupta, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 67, 870 (2007)

    Article  ADS  Google Scholar 

  22. L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, J. Tennyson, J. Quant. Spectrosc. Radiat. Transf. 111, 2139 (2010)

    Article  ADS  Google Scholar 

  23. L.S. Rothman et al., J. Quant. Spectrosc. Radiat. Transf. 110, 533 (2009)

    Article  ADS  Google Scholar 

  24. I. Stranic, S.H. Pyun, D.F. Davidson, R.K. Hanson, Combust. Flame 159, 3242 (2012)

    Article  Google Scholar 

  25. I. Stranic, S.H. Pyun, D.F. Davidson, R.K. Hanson, Combust. Flame 160, 1012 (2013)

    Article  Google Scholar 

  26. T. Javed, E.F. Nasir, E.-T. Es-sebbar, A. Farooq, Fuel 140, 201 (2015)

    Article  Google Scholar 

  27. A. Farooq, D.F. Davidson, R.K. Hanson, C.K. Westbrook, Fuel 134, 26 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The research reported in this paper was funded by King Abdullah University of Science and Technology (KAUST) and by Saudi Aramco under the FUELCOM program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aamir Farooq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KC, U., Nasir, E.F. & Farooq, A. A mid-infrared absorption diagnostic for acetylene detection. Appl. Phys. B 120, 223–232 (2015). https://doi.org/10.1007/s00340-015-6125-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6125-x

Keywords

Navigation