Skip to main content
Log in

Probing the semi-macroscopic vacuum by higher-harmonic generation under focused intense laser fields

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The invention of the laser immediately enabled the detection of nonlinear photon–matter interactions, as manifested for example by Franken et al.’s detection of second-harmonic generation.

With the recent advancement in high-power, high-energy lasers and the examples of nonlinearity studies of the laser-matter interaction by virtue of properly arranging lasers and detectors, we envision the possibility of probing nonlinearities of the photon interaction in vacuum over substantial space-time scales, compared to the microscopic scale provided by high-energy accelerators.

Specifically, we introduce the photon–photon interaction in a quasi-parallel colliding system and the detection of higher harmonics in that system. The method proposed should realize a far greater sensitivity of probing possible low-mass and weakly coupling fields that have been postulated.

With the availability of a large number of coherent photons, we suggest a scheme for the detection of higher harmonics via the averaged resonant production and decay of these postulated fields within the uncertainty of the center-of-mass energy between incoming laser photons.

The method carves out a substantial swath of new experimental parameter regimes on the coupling of these fields to photons, under appropriate laser technologies, even weaker than that of gravity in the mass range well below 1 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Amsler et al. (Particle Data Group) Phys. Lett. B 667, 1 (2008) and 2009 partial update for the 2010 edition. See section for Axions and other similar particles

    Article  ADS  Google Scholar 

  2. B. Holdom, Phys. Lett. B 166, 196 (1986)

    Article  ADS  Google Scholar 

  3. B. Batell, T. Gherghetta, Phys. Rev. D 73, 045016 (2006). arXiv:hep-ph/0512356

    Article  MathSciNet  ADS  Google Scholar 

  4. S.A. Abel, J. Jaeckel, V.V. Khoze, A. Ringwald, Phys. Lett. B 666, 66 (2008). arXiv:hep-ph/0608248

    Article  ADS  Google Scholar 

  5. H. Gies, J. Jaeckel, A. Ringwald, Phys. Rev. Lett. 97, 140402 (2006). arXiv:hep-ph/0607118

    Article  ADS  Google Scholar 

  6. Y.F. Cai, E.N. Saridakis, M.R. Setare, J.Q. Xia, Quintom cosmology: theoretical implications and observations, arXiv:0909.2776 [hep-th]

  7. S. Tsujikawa, Dark energy: investigation and modeling. arXiv:1004.1493 [astro-ph.CO]

  8. Y. Fujii, K. Maeda, The Scalar-Tensor Theory of Gravitation (Cambridge University Press, Cambridge, 2003)

    MATH  Google Scholar 

  9. S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967)

    Article  ADS  Google Scholar 

  10. G.A. Mourou, T. Tajima, S.V. Bulanov, Rev. Mod. Phys. 78, 309 (2006)

    Article  ADS  Google Scholar 

  11. T. Tajima, K. Mima, H. Baldis (eds.), High Field Science (Kluwer Academic/Plenum, New York, 2000)

    Google Scholar 

  12. T. Tajima, Eur. Phys. J. D 55, 519 (2009)

    Article  ADS  Google Scholar 

  13. A.T. Forrester, R.A. Gudmundsen, P.O. Johnson, Phys. Rev. 99, 1691 (1955)

    Article  ADS  Google Scholar 

  14. Y. Minami, T. Yogi, K. Sakai, Phys. Rev. A 78, 033822 (2008)

    Article  ADS  Google Scholar 

  15. P. Franken, A.E. Hill, C.W. Peters, G. Weinreich, Phys. Rev. Lett. 7, 118 (1961)

    Article  ADS  Google Scholar 

  16. W. Heisenberg, H. Euler, Z. Phys. 98, 714 (1936). arXiv:physics/0605038

    Article  ADS  Google Scholar 

  17. V. Weisskopf, K. Dan. Vidensk. Selsk. Skr., Nat.vidensk. Math. Afd. XIV, 166 (1936)

    Google Scholar 

  18. H.J. de Vega, N.G. Sanchez, astro-ph/0701212

  19. In preparation for Appl. Phys. B

  20. K. Homma, in AIP Conference Proceedings, vol. 1153, pp. 49–60 (2009). arXiv:0911.5701v1 [quant-ph]

    Chapter  Google Scholar 

  21. R. Cameron et al., Phys. Rev. D 47, 3707 (1993)

    Article  ADS  Google Scholar 

  22. E. Zavattini et al. (PVLAS Collaboration), Phys. Rev. D 77, 032006 (2008). arXiv:0706.3419 [hep-ex]

    Article  ADS  Google Scholar 

  23. C. Robilliard, R. Battesti, M. Fouche, J. Mauchain, A.M. Sautivet, F. Amiranoff, C. Rizzo, Phys. Rev. Lett. 99, 190403 (2007). arXiv:0707.1296 [hep-ex]

    Article  ADS  Google Scholar 

  24. M. Fouche et al., Phys. Rev. D 78, 032013 (2008)

    Article  ADS  Google Scholar 

  25. K. Ehret et al., Production and detection of axion-like particles in a HERA dipole magnet: Letter-of-intent for the ALPS experiment. arXiv:hep-ex/0702023

  26. A.V. Afanasev, O.K. Baker, K.W. McFarlane, Production and detection of very light spin-zero bosons at optical frequencies. arXiv:hep-ph/0605250

  27. A. Afanasev et al., Phys. Rev. Lett. 101, 120401 (2008). arXiv:0806.2631 [hep-ex]

    Article  MathSciNet  ADS  Google Scholar 

  28. P. Pugnat et al. (OSQAR Collaboration), Phys. Rev. D 78, 092003 (2008). arXiv:0712.3362 [hep-ex]

    Article  ADS  Google Scholar 

  29. A.S. Chou et al. (GammeV (T-969) Collaboration), Phys. Rev. Lett. 100, 080402 (2008). arXiv:0710.3783 [hep-ex]

    Article  ADS  Google Scholar 

  30. A.S. Chou et al. (GammeV Collaboration), Phys. Rev. Lett. 102, 030402 (2009). arXiv:0806.2438 [hep-ex]

    Article  ADS  Google Scholar 

  31. Y. Fujii, K. Homma, An approach toward the laboratory search for the scalar field as a candidate of Dark Energy. arXiv:1006.1762 [gr-qc]

  32. http://www.extreme-light-infrastructure.eu/. See also http://www.eli-np.ro/documents/meeting-10-12marchPresentations/11-03-2011/Experiments/Homma-ELI-NP-Buchrest-Mar10-12.pdf

  33. For example, see section for Cross-section formulae for specific processes in Amsler et al. (Particle Data Group), Phy. Lett. B 667, 1 (2008) and 2009 partial update for the 2010 edition

  34. A. Yariv, Optical Electronics in Modern Communications (Oxford University Press, Oxford, 1997)

    Google Scholar 

  35. The complicated analytic solution of the integral is found. We have checked the behavior of the solution around the width a

  36. For example, see Fig. 2 and Sect. 4 in J. Jaeckel and A. Ringwald, The Low-Energy Frontier of Particle Physics. arXiv:1002.0329 [hep-ph]

  37. For example see R. Loudon, The Quantum Theory of Light, 3rd edn. (Oxford University Press, New York, 2000)

    MATH  Google Scholar 

  38. B. Dobrich, H. Gies, J. High Energy Phys. 1010, 022 (2010). arXiv:1006.5579 [hep-ph]

    Article  ADS  Google Scholar 

  39. B. Dobrich, H. Gies, High-intensity probes of axion-like particles. arXiv:1010.6161 [hep-ph]

  40. V.G. Bordo, Opt. Commun. 132, 62 (1996)

    Article  ADS  Google Scholar 

  41. W. Dittrich, H. Gies, Probing the Quantum Vacuum (Springer, Berlin, 2007). See p. 183

    Google Scholar 

  42. C. Amsler et al. (Particle Data Group), Phy. Lett. B 667, 1 (2008) and 2009 partial update for the 2010 edition. See section for High-energy collider parameters

  43. D.N. Spergel et al., Astrophys. J. Suppl. Ser. 148, 175 (2004)

    Article  ADS  Google Scholar 

  44. J. Schwinger, Phys. Rev. 82, 664 (1951)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. A.G. Riess et al., Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  46. S. Perlmutter et al., Nature 391, 51 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Homma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Homma, K., Habs, D. & Tajima, T. Probing the semi-macroscopic vacuum by higher-harmonic generation under focused intense laser fields. Appl. Phys. B 106, 229–240 (2012). https://doi.org/10.1007/s00340-011-4567-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4567-3

Keywords

Navigation