Skip to main content
Log in

Assessment of interferences to nonlinear two-line atomic fluorescence (NTLAF) in sooty flames

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Nonlinear excitation regime two-line atomic fluorescence (NTLAF) is a laser-based thermometry technique that has application in turbulent flames with soot. However, no assessment of the various interferences from soot or its precursors in flames with high soot loadings on the technique is available. To examine these issues, both on- and off-wavelength NTLAF measurements are presented and compared for laminar nonpremixed ethylene-air flames. Laser-induced incandescence (LII) measurements were used to determine the corresponding soot concentration and location in the investigated flames. The measurements indicate that interferences, such as spurious scattering and laser-induced incandescence from soot, are not significant for the present set of flame conditions. However, interferences from soot precursors, predominantly condensed species (CS) and perhaps polycyclic aromatic hydrocarbons (PAH), can be significant. Potential detection schemes to correct or circumvent these interference issues are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.W. Dockery, P.H. Stone, N. Engl. J. Med. 356, 511 (2007)

    Article  Google Scholar 

  2. N. Künzli, R. Kaiser, S. Medina, M. Studnicka, O. Chanel, P. Filliger, M. Herry, F. Horak Jr., V. Puybonnieux-Texier, P. Quénel, J. Schneider, R. Seethaler, J.C. Vergnaud, H. Sommer, Lancet 356, 795 (2000)

    Article  Google Scholar 

  3. M.A. Delichatsios, J.D. Ris, L. Orloff, Proc. Combust. Inst. 24, 1075 (1992)

    Google Scholar 

  4. G. Nathan, J. Mi, Z. Alwahabi, G. Newbold, D. Nobes, Prog. Energy Combust. Sci. 32, 496 (2006)

    Article  Google Scholar 

  5. J.J. Parham, G.J. Nathan, J.P. Smart, S.J. Hill, B.G. Jenkins, J. I. Energy 73, 25 (2000)

    Google Scholar 

  6. Z.A. Mansurov, Combust. Explos. Shock 41, 727 (2005)

    Article  Google Scholar 

  7. M. Aldén, Combust. Sci. Technol. 149, 1 (1999)

    Article  Google Scholar 

  8. A.T. Hartlieb, B. Atakan, K. Kohse-Höinghaus, Appl. Phys. B 70, 435 (2000)

    Article  ADS  Google Scholar 

  9. J.E. Dec, J.O. Keller, Proc. Combust. Inst. 21, 1737 (1986)

    Google Scholar 

  10. C.F. Kaminski, J. Engström, M. Aldén, Proc. Combust. Inst. 27, 85 (1998)

    Google Scholar 

  11. J. Engström, J. Nygren, M. Aldén, C.F. Kaminski, Opt. Lett. 25, 1469 (2000)

    Article  ADS  Google Scholar 

  12. J. Nygren, J. Engström, J. Walewski, C.F. Kaminski, M. Aldén, Meas. Sci. Technol. 12, 1294 (2001)

    Article  ADS  Google Scholar 

  13. I.S. Burns, J. Hult, G. Hartung, C.F. Kaminski, Proc. Combust. Inst. 31, 775 (2007)

    Article  Google Scholar 

  14. I.S. Burns, N. Lamoureux, C.F. Kaminski, J. Hult, P. Desgroux, Appl. Phys. B 93, 907 (2008)

    Article  ADS  Google Scholar 

  15. I.S. Burns, X. Mercier, M. Wartel, R.S.M. Chrystie, J. Hult, C.F. Kaminski, Proc. Combust. Inst. 33, 799 (2011)

    Article  Google Scholar 

  16. Q.N. Chan, P.R. Medwell, P.A.M. Kalt, Z.T. Alwahabi, B.B. Dally, G.J. Nathan, Appl. Opt. 49, 1257 (2010)

    Article  ADS  Google Scholar 

  17. Q.N. Chan, P.R. Medwell, P.A. Kalt, Z.T. Alwahabi, B.B. Dally, G.J. Nathan, Proc. Combust. Inst. 33, 791 (2011)

    Article  Google Scholar 

  18. P.R. Medwell, Q.N. Chan, P.A.M. Kalt, Z.T. Alwahabi, B.B. Dally, G.J. Nathan, Appl. Opt. 48, 1237 (2009)

    Article  ADS  Google Scholar 

  19. P.R. Medwell, Q.N. Chan, P.A.M. Kalt, Z.T. Alwahabi, B.B. Dally, G.J. Nathan, Appl. Spectrosc. 64, 173 (2010)

    Article  ADS  Google Scholar 

  20. C.S. Moreau, E. Therssen, X. Mercier, J.F. Pauwels, P. Desgroux, Appl. Phys. B 78, 485 (2004)

    Article  ADS  Google Scholar 

  21. A. Gomez, M.G. Littman, I. Glassman, Combust. Flame 70, 225 (1987)

    Article  Google Scholar 

  22. P.R. Medwell, P.A.M. Kalt, B.B. Dally, Combust. Flame 152, 100 (2008)

    Article  Google Scholar 

  23. R.K. Winge, V.A. Fassel, R.N. Kniseley, Appl. Spectrosc. 25, 636 (1971)

    Article  ADS  Google Scholar 

  24. C. Schultz, B.F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, G. Smallwood, Appl. Phys. B 83, 333 (2006)

    Article  ADS  Google Scholar 

  25. N.H. Qamar, Z.T. Alwahabi, Q.N. Chan, G.J. Nathan, D. Roekaerts, K.D. King, Combust. Flame 156, 1339 (2009)

    Article  Google Scholar 

  26. R.L.V. Wal, Appl. Opt. 35, 6548 (1996)

    Article  ADS  Google Scholar 

  27. N.H. Qamar, G.J. Nathan, Z.T. Alwahabi, K.D. King, Proc. Combust. Inst. 30, 1493 (2005)

    Article  Google Scholar 

  28. J. Zerbs, K.P. Geigle, O. Lammel, J. Hader, R. Stirn, R. Hadef, W. Meier, Appl. Phys. B 96, 683 (2009)

    Article  ADS  Google Scholar 

  29. T.C. Williams, C.R. Shaddix, K.A. Jensen, J.M. Auo-Antilla, Int. J. Heat Mass Transf. 50, 1616 (2007)

    Article  Google Scholar 

  30. R.L.V. Wal, K.A. Jensen, M.Y. Choi, Combust. Flame 109, 399 (1997)

    Article  Google Scholar 

  31. A.C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach, New York, 1996)

    Google Scholar 

  32. G. Prado, A. Garo, A. Ko, A. Sarofim, Proc. Combust. Inst. 20, 989 (1984)

    Google Scholar 

  33. K.C. Smyth, J.H. Miller, R.C. Dorfman, G. Mallard, R.J. Santoro, Combust. Flame 62, 157 (1985)

    Article  Google Scholar 

  34. A. Ciajolo, A. D’Anna, R. Barbella, Combust. Sci. Technol. 100, 271 (1994)

    Article  Google Scholar 

  35. A. Ciajolo, R. Ragucci, B. Apicella, R. Barbella, M. de Joannon, A. Tregrossi, Chemosphere 42, 835 (2001)

    Article  Google Scholar 

  36. A. Ciajolo, B. Apicella, R. Barbella, A. Tregrossi, F. Beretta, C. Allouis, Energy Fuels 15, 987 (2001)

    Article  Google Scholar 

  37. F. Beretta, V. Cincotti, A. D’Alessio, P. Menna, Combust. Flame 61, 211 (1985)

    Article  Google Scholar 

  38. L. Petarca, F. Marconi, Combust. Flame 78, 308 (1989)

    Article  Google Scholar 

  39. D.S. Coe, J.I. Steinfeld, Chem. Phys. Lett. 76, 485 (1980)

    Article  ADS  Google Scholar 

  40. W.G. Bessler, F. Hildenbrand, C. Schulz, Appl. Opt. 40, 748 (2001)

    Article  ADS  Google Scholar 

  41. V.A. Fassel, J.O. Rasmuson, R.N. Kniseley, T.G. Cowley, Spectrochim. Acta B 25, 559 (1970)

    Article  ADS  Google Scholar 

  42. B.S. Haynes, H.G. Wagner, Prog. Energy Combust. Sci. 7, 229 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. N. Chan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, Q.N., Medwell, P.R., Alwahabi, Z.T. et al. Assessment of interferences to nonlinear two-line atomic fluorescence (NTLAF) in sooty flames. Appl. Phys. B 104, 189–198 (2011). https://doi.org/10.1007/s00340-011-4497-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4497-0

Keywords

Navigation